Solutions to MATH105 exam September 2012 Section A		
2 marks 4 marks Standard home-	1.a) If $x^2 = 4$ then x is an integer. This is true because $x^2 = 4 \Leftrightarrow x = \pm 2$ and both 2 and -2 are integers. b) If x is rational and $x < 1$ then there exists a rational number y which is strictly between x and 1 This is also true, because $y = \frac{1+x}{2}$ is rational and $y - x = \frac{1-x}{2} > 0$ and $1 - y = \frac{1-x}{2} > 0$.	
work exercises 6 marks in total		
2 marks 2 marks Standard home- work exercises 4 marks in total	2a) $x \le -1 \lor x \ge 0$ b) $\exists x \in (0, \pi/2)$ such that $\tan x \le x$.	
2 marks 2 marks 2 marks	3a) $-1 < 0$ and $2 < 3 < 4$. So $((-3, -1) \cup (2, 4]) \cap [0, 3] = (2, 3]$. b) $(0, 2) \cup ((1, 3) \cap [2, 4)) = (0, 2) \cup [2, 3) = (0, 3)$. c) $[2, 3) \subset [-1, 3]$, and so $[-1, 3] \cup [2, 3) = [-1, 3]$.	
	$([-1,3] \cup [2,3) \cup (6,7]) \cap [3,5) = ([-1,3] \cup (6,7]) \cap [3,5)$	
	$= ((-1,3] \cap [3,5)) \cup ((-1,3) \cap (6,7])$ $= (-1,3] \cap [3,5) = \{3\}.$	
Standard home- work exercises 6 marks in total		
4 marks	4a) $3x^2 > 2x + 1 \iff 3x^2 - 2x - 1 > 0 \iff (3x + 1)(x - 1) > 0$	
	$\Leftrightarrow (3x+1 > 0 \land x-1 > 0) \lor (3x+1 < 0 \land x-1 < 0) \Leftrightarrow x > 1 \lor x < -\frac{1}{3}.$	
4 marks	b) $\left 2 + \frac{3}{x}\right \le 1 \Leftrightarrow -1 \le 2 + \frac{3}{x} \le 1 \Leftrightarrow -3 \le \frac{3}{x} \le -1$	
	$\Leftrightarrow x < 0 \land -3x \ge 3 \land 3 \ge -x \Leftrightarrow -3 \le x \le -1.$	
Standard home- work exercises. 8 marks in total		

Solutions to MATH105 exam September 2012

1 marks	5. To start the induction, $2^3 = 8 < 16 = 4^2$ So $n^3 < 4^n$ holds for $n = 2$. Now suppose inductively that $n^3 < 4^n$ for some $n \in \mathbb{N}$ with $n \ge 2$. Then
4 marks	$(n+1)^3 = n^3 \left(1 + \frac{1}{n}\right)^3 \le n^3 \left(\frac{3}{2}\right)^3 = \frac{27}{8}n^3 < 4n^3 < 4 \times 4^n = 4^{n+1}$
	So if $n \in \mathbb{N}$ and $n \ge 2$ then $n^3 < 4^n \Rightarrow (n+1)^3 < 4^{n+1}$. So by induction $n^3 < 4^n$ for all $n \in \mathbb{N}$ with $n \ge 2$.
1 mark	For $n = 0$ we have $0^3 = 0 < 1 = 4^0$ and for $n = 1$ we have $1^3 = 1 < 4^1 = 4$.
Standard home- work exercise 6 marks in total	
0 marks in totai	
	6.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{ccccccc} R_1 - 2R_2 & & 43 & -63 \\ \to & & -15 & 22 & 9 \end{array}$
4 marks	
	As a result of this:
1 mark	(i) the g.c.d. d is 9;
1 mark	(ii) from the first row of the last matrix, $r = 63$ and $s = 43$;
1 mark	(iii) from the second row of either of the last two matrices $m = -15$ and
0 montra	n = 22;
2 marks Standard home-	(iv) The lcm is $567 \times 43 = 24381$.
Standard home- work exercise	
9 marks in total	

2 marks 3 marks	7 $f: X \to Y$ is injective if $\forall x_1, x_2 \in X, f(x_1) = f(x_2 \Leftrightarrow x_1 = x_2)$. The image of f , Im (f) is $\{f(x) : x \in X\}$. f is a <i>bijection</i> if f is injective and Im $(f) = Y$, that is, f is also surjective
3 marks	a) Since f is strictly decreasing on $[0, \infty)$, it is injective. We have $f(0) = 1$ and $\lim_{x\to\infty} \frac{1}{1+r^2} = 0$ So $\operatorname{Im}(f) = (0, 1]$.
2 marks	b) $2\cos(x) = 2\cos(-x)$ for all $x \in \mathbb{R}$. So f is not injective and $f([-\pi/2, \pi/2]) = f([0, \pi/2])$. On $[0, \pi/2]$, f is strictly decreasing, with $f(0) = 2$ and $f(\pi/2) = 0$. So $\operatorname{Im}(f) = [0, 2]$.
Standard theory	
followed by stan-	
dard homework	
exercises	
10 marks in total	
Standard theory	8. $ A_1 \cup A_2 = A_1 + A_2 - A_1 \cap A_2 $
2 marks	
Nothing set quite	(i) Let A_1 denote the set of companies offering holidays in New York
like this	and A_2 the set of companies offering holidays in Florida. Then $15 =$
4 marks	$ A_1 + A_2 - 8$, and $ A_1 = A_2 + 3$. Then $2 A_2 = 20$ and $ A_2 = 10$ and $ A_1 = 13$.
6 marks in total	

Section	В

Theory from lec- tures 3 marks	9. ~ is reflexive if $x \sim x \forall x \in X$ ~ is symmetric if $x \sim y \Rightarrow y \sim x \forall x, y \in X.$
	\sim is <i>transitive</i> if
	$(x \sim y \land y \sim z) \Rightarrow x \sim z \forall x, y, z \in X.$
Standard home- work exercise 2 marks	(i) If $x = 1$ and $y = 0$ the $x, y \in \mathbb{R}$ and $x - y = 1 > 0$ and so $x \sim y$, but $y - x < 0$ so it is not true that $y \sim x$ and so \sim is not an equivalence relation.
Standard home- work exercise 4 marks	(ii)For any $x \in X$ we have $x/x = 1 > 0$, so $x \sim x$. Therefore \sim is reflexive. If $x \sim y$ then $x/y > 0$ and hence $y/x = (x/y)^{-1} > 0$. So $x \sim y \Rightarrow y \sim x$ and \sim is symmetric. If $x \sim y$ and $y \sim z$ then $x/y > 0$ and $y/z > 0$, and hence $x/z = (x/y) \cdot (y/z) > 0$ and $x \sim z$. So \sim is transitive and is an equivalence relation.
2 marks	There are two equivalence classes: $(0,\infty)$ and $(-\infty,0)$ because for x , $y \in X$, $x/y > 0 \Leftrightarrow (x > 0 \land y > 0) \lor (x < 0 \land y < 0)$
Unseen 4 marks	(iii) If $x \in \mathbb{R}$ and $x \neq 0$ then $(x, z) = x(1, z/x) \sim (1, z/x)$. Also $(1, y_1) \sim (1, y_2) \Leftrightarrow (1, y_1) = (\lambda, \lambda y_2) \Leftrightarrow \lambda = 1 \land y_1 = y_2$. So for each $y \in \mathbb{R}$, $(1, y)$ is in a different equivalence class, and (x, z) is in the same equivalence class as $(1, z/x)$ provided $x \neq 0$. If $x = 0$ and $z \neq 0$ then $(0, z) = z(0, 1)$. So the last equivalence class is that of $(0, 1)$.

S v 4

S v iı 5

Inductive step Now suppose that the required upper bound holds on $|x_{n+1} - x_n|$. Then we use the formula for $|x_{n+2} - x_{n+1}|$ at the start of (ii). We also use the bounds $0 < x_n \le 1$ and $0 < x_{n+1} < 1$ to deduce

$$\frac{1 + x_n + x_{n+1}}{2} \le 3.$$

Then from (ii) we have

$$|x_{n+2} - x_{n+1}| = \frac{|x_{n+1} - x_n|(1 + x_n + x_{n+1})|}{4} \le \frac{3}{4}|x_{n+1} - x_n|$$
$$\le \frac{3}{4} \cdot \left(\frac{3}{4}\right)^n \cdot \frac{1}{4} = \left(\frac{3}{4}\right)^{n+1} \cdot \frac{1}{4}.$$

So the upper bound for $|x_{n+1} - x_n|$ implies the upper bound for $|x_{n+2} - x_{n+1}|$, and by induction we have

$$|x_{n+1} - x_n| \le \frac{1}{4} \left(\frac{3}{4}\right)^n$$

for all $n \in \mathbb{N}$.

 $15~\mathrm{marks}$ in total

Theory from lec-11. A set $A \subset Q$ is a Dedekind cut if tures (i) A is nonempty, and bounded above, 5 marks (ii) $x \in A \land y \in \mathbb{Q} \land y < x \Rightarrow y \in A$ (iii) A does not have a maximal element. 1 mark A Dedekind cut A is rational if it is of the form $\{x \in \mathbb{Q} : x < q\}$ for some $q \in \mathbb{Q}$. This is the Dedekind cut representing q. a) If $\{x \in \mathbb{Q} : -2 < x < \frac{1}{3}\}$ then $-2 \notin A$ and $-1 \in A$, which violates Similar to homework exercises property (ii), and A is not a Dedekind cut. 1 mark (b) If $A = \{x \in \mathbb{Q} : x > \frac{1}{3}\}$ then A is not bounded above – because 1 mark $\mathbb{Z}_+ \subset A$, for example – which violates property (i), and A is not a Dedekind cut. 2 marks c) $A = \{x \in \mathbb{Q} : x^2 + 2x + 3 < 0\} = \{x \in \mathbb{Q} : (x+1)^2 + 2 < 0\} = \emptyset.$ So $A = \emptyset$, and property (i) is violated, and A is not a Dedekind cut. Theory from lec-Let A be a Dedekind cut, and define tures, but basi- $B = \{-x : x \in \mathbb{Q} \land x \notin A\}$ cally unseen: not expected to re- $B \neq \emptyset$ because $-x \in B$ for any $x \in \mathbb{Q} \setminus A$. There is at least one such x peat from membecause A is bounded above. ory. If $y \in B$ and $z \in A$ then z < -y because if $-y \leq z$ then by property 5 marks (ii) for Awe have $-y \in A$ and $-(-y) \notin B$. So for any $z \in A$ we have y < -z for all $y \in B$, and so B is bounded above by -z for any $z \in A$. 15 marks in total

Theory from lec-12. A is finite if either A is empty, or, for some $n \in \mathbb{Z}_+$, there is a bijection $f : \{k \in \mathbb{N} : k < n\} \to A$. For a fixed set A, there is at most tures one $n \in \mathbb{Z}_+$ for which such a bijection exists, and if there is such an n4 marks then A is said to be of cardinality n. The empty set is said to be of cardinality 0. A is *countable* if either A is finite or there is a bijection $f: \mathbb{N} \to A$. Standard A is countable, B is uncountable, C is countable and D is uncountable. examples 4 marks 2 marks $f(x) = e^x$ will do, but of course there are many other examples. The inverse function is $\ln : (0, \infty) \to \mathbb{R}$. Example from lec-Define $g: \mathbb{N} \to \mathbb{Z}$ by tures but not ex $g(n) = \begin{cases} n/2 \text{ if } n \text{ is even,} \\ -(n+1)/2 \text{ if } n \text{ is odd.} \end{cases}$ pected to be done from memory. 5 marksNow $n/2 = p \Leftrightarrow n = 2p,$ and $-(n+1)/2 = p \Leftrightarrow -n - 1 = 2p \Leftrightarrow n = -2p - 1.$ So if we define $h : \mathbb{Z} \to \mathbb{N}$ by $h(p) = \begin{cases} 2p \text{ if } p \ge 0, \\ -2p - 1 \text{ if } p < 0, \end{cases}$ then $g(n) = p \Leftrightarrow h(p) = n$ and hence g(h(p)) = p for all $p \in \mathbb{Z}$ and h(g(n)) = n for all $n \in \mathbb{N}$. 15 marks in total