
Solutions to MATH105 exam September 2012
Section A

2 marks 1.a) If x2 = 4 then x is an integer.
This is true because x2 = 4 ⇔ x = ±2 and both 2 and −2 are integers.

4 marks b) If x is rational and x < 1 then there exists a rational number y which
is strictly between x and 1

This is also true, because y =
1 + x

2
is rational and y − x =

1− x
2

>0

and 1− y =
1− x

2
> 0.

Standard home-
work exercises
6 marks in total

2 marks 2a)x ≤ −1 ∨ x ≥ 0
2 marks b) ∃x ∈ (0, π/2) such that tanx ≤ x.
Standard home-
work exercises
4 marks in total

2 marks 3a) −1 < 0 and 2 < 3 < 4. So ((−3,−1) ∪ (2, 4]) ∩ [0, 3] = (2, 3].
2 marks b) (0, 2) ∪ ((1, 3) ∩ [2, 4)) = (0, 2) ∪ [2, 3) = (0, 3).
2 marks c) [2, 3) ⊂ [−1, 3], and so [−1, 3] ∪ [2, 3) = [−1, 3].

([−1, 3] ∪ [2, 3) ∪ (6, 7]) ∩ [3, 5) = ([−1, 3] ∪ (6, 7]) ∩ [3, 5)

= ((−1, 3] ∩ [3, 5)) ∪ ((−1, 3) ∩ (6, 7])

= (−1, 3] ∩ [3, 5) = {3}.

Standard home-
work exercises
6 marks in total

4 marks 4a) 3x2 > 2x+ 1 ⇔ 3x2 − 2x− 1 > 0⇔ (3x+ 1)(x− 1) > 0

⇔ (3x+ 1 > 0∧x−1 > 0)∨ (3x+ 1 < 0∧x−1 < 0)⇔ x > 1∨x < −1

3
.

4 marks b)

∣∣∣∣2 +
3

x

∣∣∣∣ ≤ 1⇔ −1 ≤ 2 +
3

x
≤ 1⇔ −3 ≤ 3

x
≤ −1

⇔ x < 0 ∧ −3x ≥ 3 ∧ 3 ≥ −x⇔ −3 ≤ x ≤ −1.

Standard home-
work exercises.
8 marks in total
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1 marks 5. To start the induction, 23 = 8 < 16 = 42 So n3 < 4n holds for n = 2.

4 marks

Now suppose inductively that n3 < 4n for some n ∈ N with n ≥ 2. Then

(n+ 1)3 = n3
(

1 +
1

n

)3

≤ n3
(

3

2

)3

=
27

8
n3 < 4n3 < 4× 4n = 4n+1

So if n ∈ N and n ≥ 2 then n3 < 4n ⇒ (n+ 1)3 < 4n+1. So by induction
n3 < 4n for all n ∈ N with n ≥ 2.

1 mark For n = 0 we have 03 = 0 < 1 = 40 and for n = 1 we have 13 = 1 <
41 = 4.

Standard home-
work exercise
6 marks in total

6.

1 0
0 1

∣∣∣567
387

R1 −R2

→ 1 −1
0 1

∣∣∣180
387

→
R2 − 2R1

1 −1
−2 3

∣∣∣180
27

R1 − 6R2

→ 13 −19
−2 3

∣∣∣18
27

→
R2 −R1

13 −19
−15 22

∣∣∣18
9

R1 − 2R2

→ 43 −63
−15 22

∣∣∣0
9

4 marks

As a result of this:
1 mark (i) the g.c.d. d is 9;
1 mark (ii) from the first row of the last matrix, r = 63 and s = 43;
1 mark (iii) from the second row of either of the last two matrices m = −15 and

n = 22;
2 marks (iv) The lcm is 567× 43 = 24381.
Standard home-
work exercise
9 marks in total
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2 marks 7 f : X → Y is injective if ∀x1, x2 ∈ X, f(x1) = f(x2 ⇔ x1 = x2.
3 marks The image of f , Im(f) is {f(x) : x ∈ X}. f is a bijection if f is injective

and Im(f) = Y , that is, f is also surjective
3 marks a) Since f is strictly decreasing on [0,∞), it is injective. We have f(0) =

1 and limx→∞
1

1+x2 = 0 So Im(f) = (0, 1].

2 marks b) 2 cos(x) = 2 cos(−x) for all x ∈ R. So f is not injective and
f([−π/2, π/2]) = f([0, π/2]). On [0, π/2], f is strictly decreasing, with
f(0) = 2 and f(π/2) = 0. So Im(f) = [0, 2].

Standard theory
followed by stan-
dard homework
exercises
10 marks in total

Standard theory
2 marks

8. |A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2|

Nothing set quite
like this
4 marks

(i) Let A1 denote the set of companies offering holidays in New York
and A2 the set of companies offering holidays in Florida. Then 15 =
|A1|+ |A2| − 8, and |A1| = |A2|+ 3. Then 2|A2| = 20 and |A2| = 10 and
|A1| = 13.

6 marks in total
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Section B

Theory from lec-
tures
3 marks

9. ∼ is reflexive if
x ∼ x∀x ∈ X

∼ is symmetric if

x ∼ y ⇒ y ∼ x ∀ x, y ∈ X.

∼ is transitive if

(x ∼ y ∧ y ∼ z) ⇒ x ∼ z ∀ x, y, z ∈ X.

Standard home-
work exercise
2 marks

(i) If x = 1 and y = 0 the x, y ∈ R and x − y = 1 > 0 and so x ∼ y,
but y− x < 0 so it is not true that y ∼ x and so ∼is not an equivalence
relation.

Standard home-
work exercise
4 marks

(ii)For any x ∈ X we have x/x = 1 > 0, so x ∼ x. Therefore ∼ is
reflexive.
If x ∼ y then x/y > 0 and hence y/x = (x/y)−1 > 0. So x ∼ y ⇒ y ∼ x
and ∼ is symmetric.
If x ∼ y and y ∼ z then x/y > 0 and y/z > 0, and hence x/z =
(x/y) · (y/z) > 0 and x ∼ z. So ∼ is transitive and is an equivalence
relation.

2 marks There are two equivalence classes: (0,∞) and (−∞, 0) because for x,
y ∈ X,

x/y > 0⇔ (x > 0 ∧ y > 0) ∨ (x < 0 ∧ y < 0)

Unseen
4 marks

(iii) If x ∈ R and x 6= 0 then (x, z) = x(1, z/x) ∼ (1, z/x). Also
(1, y1) ∼ (1, y2) ⇔ (1, y1) = (λ, λy2) ⇔ λ = 1 ∧ y1 = y2. So for each
y ∈ R, (1, y) is in a different equivalence class, and (x, z) is in the same
equivalence class as (1, z/x) provided x 6= 0. If x = 0 and z 6= 0 then
(0, z) = z(0, 1). So the last equivalence class is that of (0, 1).
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Standard
(harder) home-
work exercise
4 marks

10(i) . Base case 1
3 < x0 = 1. So 1

3 < xn ≤ 1 is true for n = 0.
Inductive step Now fix n ∈ N and suppose that 1

3 < xn ≤ 1. Then
1
9 < x2n ≤ 1 and

4

3
+

1

9
< 1 + xn + x2n ≤ 3

So
1

3
< xn+1 =

1 + xn + x2n
4

≤ 3

4
< 1.

So 1
3 < xn ≤ 1 ⇒ 1

3 < xn+1 < 1.
So by induction 1

3 < xn ≤ 1 holds for all n ∈ N.
Calculation
2 marks

(ii)

xn+2−xn+1 =
1 + xn+1 + x2n+1 − 1− xn − x2n

4
=
xn+1 − xn + x2n+1 − x2n

4

=
(1 + xn + xn+1)(xn+1 − xn)

4
.

Some similarities
with exercises set
4 marks

We have x1 = 3
4 < x0 and hence x1 − x0 < 0. Since xn ≥ 1

3 for all n, we
have 1+xn+xn+1 > 0 for all n ∈ N. So xn+1−xn < 0⇒ xn+2−xn+1 < 0
and since the base case n = 0 holds, we have xn+1−xn < 0 for all n ≤ N
and xn is a decreasing sequence.

Standard home-
work problem on
induction.
5 marks

(iii) Base case

|x1 − x0| =
∣∣∣∣1− 3

4

∣∣∣∣ =
1

4

So the required upper bound on |xn+1 − xn| holds for n = 0.
Inductive step Now suppose that the required upper bound holds on
|xn+1 − xn|. Then we use the formula for |xn+2 − xn+1| at the start of
(ii). We also use the bounds 0 < xn ≤ 1 and 0 < xn+1 < 1 to deduce

1 + xn + xn+1

2
≤ 3.

Then from (ii) we have

|xn+2 − xn+1| =
|xn+1 − xn|(1 + xn + xn+1

4
≤ 3

4
|xn+1 − xn|

≤ 3

4
·
(

3

4

)n

· 1

4
=

(
3

4

)n+1

· 1

4
.

So the upper bound for |xn+1 − xn| implies the upper bound for
|xn+2 − xn+1|, and by induction we have

|xn+1 − xn| ≤
1

4

(
3

4

)n

for all n ∈ N.
15 marks in total
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Theory from lec-
tures
5 marks

11. A set A ⊂ Q is a Dedekind cut if

(i) A is nonempty, and bounded above,

(ii) x ∈ A ∧ y ∈ Q ∧ y < x⇒ y ∈ A

(iii) A does not have a maximal element.

1 mark A Dedekind cut A is rational if it is of the form {x ∈ Q : x < q} for
some q ∈ Q. This is the Dedekind cut representing q.

Similar to home-
work exercises
1 mark

a) If {x ∈ Q : −2 < x < 1
3} then −2 /∈ A and −1 ∈ A, which violates

property (ii), and A is not a Dedekind cut.

1 mark (b) If A = {x ∈ Q : x > 1
3} then A is not bounded above – because

Z+ ⊂ A, for example – which violates property (i), and A is not a
Dedekind cut.

2 marks c)

A =
{
x ∈ Q : x2 + 2x+ 3 < 0

}
= {x ∈ Q : (x+ 1)2 + 2 < 0} = ∅.

So A = ∅, and property (i) is violated, and A is not a Dedekind cut .

Theory from lec-
tures, but basi-
cally unseen: not
expected to re-
peat from mem-
ory.
5 marks

Let A be a Dedekind cut, and define

B = {−x : x ∈ Q ∧ x /∈ A}

B 6= ∅ because −x ∈ B for any x ∈ Q \ A. There is at least one such x
because A is bounded above.
If y ∈ B and z ∈ A then z < −y because if −y ≤ z then by property
(ii) for Awe have −y ∈ A and −(−y) 6∈ B. So for any z ∈ A we have
y < −z for all y ∈ B, and so B is bounded above by −z for any z ∈ A.

15 marks in total
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Theory from lec-
tures
4 marks

12. A is finite if either A is empty, or, for some n ∈ Z+, there is a
bijection f : {k ∈ N : k < n} → A. For a fixed set A, there is at most
one n ∈ Z+ for which such a bijection exists, and if there is such an n
then A is said to be of cardinality n. The empty set is said to be of
cardinality 0.
A is countable if either A is finite or there is a bijection f : N→ A.

Standard exam-
ples
4 marks

A is countable, B is uncountable, C is countable and D is uncountable.

2 marks f(x) = ex will do, but of course there are many other examples. The
inverse function is ln : (0,∞)→ R.

Example from lec-
tures but not ex-
pected to be done
from memory.
5 marks

Define g : N→ Z by

g(n) =

{
n/2 if n is even,

−(n+ 1)/2 if n is odd.

Now
n/2 = p⇔ n = 2p,

and
−(n+ 1)/2 = p⇔ −n− 1 = 2p⇔ n = −2p− 1.

So if we define h : Z→ N by

h(p) =

{
2p if p ≥ 0,

−2p− 1 if p < 0,

then g(n) = p ⇔ h(p) = n and hence g(h(p)) = p for all p ∈ Z and
h(g(n)) = n for all n ∈ N.

15 marks in total
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