Solutions to MATH105 exam September 2012 Section A

Section B

Theory from lectures 3 marks

Standard homework exercise 2 marks

Standard homework exercise 4 marks

2 marks

Unseen
4 marks
9. \sim is reflexive if

$$
x \sim x \forall x \in X
$$

\sim is symmetric if

$$
x \sim y \Rightarrow y \sim x \forall x, y \in X
$$

\sim is transitive if

$$
(x \sim y \wedge y \sim z) \Rightarrow x \sim z \forall x, y, z \in X
$$

(i) If $x=1$ and $y=0$ the $x, y \in \mathbb{R}$ and $x-y=1>0$ and so $x \sim y$, but $y-x<0$ so it is not true that $y \sim x$ and so \sim is not an equivalence relation.
(ii)For any $x \in X$ we have $x / x=1>0$, so $x \sim x$. Therefore \sim is reflexive.
If $x \sim y$ then $x / y>0$ and hence $y / x=(x / y)^{-1}>0$. So $x \sim y \Rightarrow y \sim x$ and \sim is symmetric.
If $x \sim y$ and $y \sim z$ then $x / y>0$ and $y / z>0$, and hence $x / z=$ $(x / y) \cdot(y / z)>0$ and $x \sim z$. So \sim is transitive and is an equivalence relation.
There are two equivalence classes: $(0, \infty)$ and $(-\infty, 0)$ because for x, $y \in X$,

$$
x / y>0 \Leftrightarrow(x>0 \wedge y>0) \vee(x<0 \wedge y<0)
$$

(iii) If $x \in \mathbb{R}$ and $x \neq 0$ then $(x, z)=x(1, z / x) \sim(1, z / x)$. Also $\left(1, y_{1}\right) \sim\left(1, y_{2}\right) \Leftrightarrow\left(1, y_{1}\right)=\left(\lambda, \lambda y_{2}\right) \Leftrightarrow \lambda=1 \wedge y_{1}=y_{2}$. So for each $y \in \mathbb{R},(1, y)$ is in a different equivalence class, and (x, z) is in the same equivalence class as $(1, z / x)$ provided $x \neq 0$. If $x=0$ and $z \neq 0$ then $(0, z)=z(0,1)$. So the last equivalence class is that of $(0,1)$.

Standard
(harder) homework exercise 4 marks

Calculation
2 marks

Some similarities with exercises set 4 marks

Standard homework problem on induction.
5 marks

15 marks in total

10(i). Base case $\frac{1}{3}<x_{0}=1$. So $\frac{1}{3}<x_{n} \leq 1$ is true for $n=0$.
Inductive step Now fix $n \in \mathbb{N}$ and suppose that $\frac{1}{3}<x_{n} \leq 1$. Then $\frac{1}{9}<x_{n}^{2} \leq 1$ and

$$
\frac{4}{3}+\frac{1}{9}<1+x_{n}+x_{n}^{2} \leq 3
$$

So

$$
\frac{1}{3}<x_{n+1}=\frac{1+x_{n}+x_{n}^{2}}{4} \leq \frac{3}{4}<1 .
$$

So $\frac{1}{3}<x_{n} \leq 1 \Rightarrow \frac{1}{3}<x_{n+1}<1$.
So by induction $\frac{1}{3}<x_{n} \leq 1$ holds for all $n \in \mathbb{N}$.
(ii)

$$
\begin{gathered}
x_{n+2}-x_{n+1}=\frac{1+x_{n+1}+x_{n+1}^{2}-1-x_{n}-x_{n}^{2}}{4}=\frac{x_{n+1}-x_{n}+x_{n+1}^{2}-x_{n}^{2}}{4} \\
=\frac{\left(1+x_{n}+x_{n+1}\right)\left(x_{n+1}-x_{n}\right)}{4} .
\end{gathered}
$$

We have $x_{1}=\frac{3}{4}<x_{0}$ and hence $x_{1}-x_{0}<0$. Since $x_{n} \geq \frac{1}{3}$ for all n, we have $1+x_{n}+x_{n+1}>0$ for all $n \in \mathbb{N}$. So $x_{n+1}-x_{n}<0 \Rightarrow x_{n+2}-x_{n+1}<0$ and since the base case $n=0$ holds, we have $x_{n+1}-x_{n}<0$ for all $n \leq \mathbb{N}$ and x_{n} is a decreasing sequence.
(iii) Base case

$$
\left|x_{1}-x_{0}\right|=\left|1-\frac{3}{4}\right|=\frac{1}{4}
$$

So the required upper bound on $\left|x_{n+1}-x_{n}\right|$ holds for $n=0$.
Inductive step Now suppose that the required upper bound holds on $\left|x_{n+1}-x_{n}\right|$. Then we use the formula for $\left|x_{n+2}-x_{n+1}\right|$ at the start of
(ii). We also use the bounds $0<x_{n} \leq 1$ and $0<x_{n+1}<1$ to deduce

$$
\frac{1+x_{n}+x_{n+1}}{2} \leq 3 .
$$

Then from (ii) we have

$$
\begin{aligned}
\left|x_{n+2}-x_{n+1}\right| & =\frac{\left|x_{n+1}-x_{n}\right|\left(1+x_{n}+x_{n+1}\right.}{4} \leq \frac{3}{4}\left|x_{n+1}-x_{n}\right| \\
& \leq \frac{3}{4} \cdot\left(\frac{3}{4}\right)^{n} \cdot \frac{1}{4}=\left(\frac{3}{4}\right)^{n+1} \cdot \frac{1}{4} .
\end{aligned}
$$

So the upper bound for $\left|x_{n+1}-x_{n}\right|$ implies the upper bound for $\left|x_{n+2}-x_{n+1}\right|$, and by induction we have

$$
\left|x_{n+1}-x_{n}\right| \leq \frac{1}{4}\left(\frac{3}{4}\right)^{n}
$$

for all $n \in \mathbb{N}$.

Theory from lectures
5 marks

1 mark

Similar to homework exercises
1 mark
1 mark

2 marks

Theory from lectures, but basically unseen: not expected to repeat from memory.
5 marks

15 marks in total
11. A set $A \subset Q$ is a Dedekind cut if
(i) A is nonempty, and bounded above,
(ii) $x \in A \wedge y \in \mathbb{Q} \wedge y<x \Rightarrow y \in A$
(iii) A does not have a maximal element.

A Dedekind cut A is rational if it is of the form $\{x \in \mathbb{Q}: x<q\}$ for some $q \in \mathbb{Q}$. This is the Dedekind cut representing q.
a) If $\left\{x \in \mathbb{Q}:-2<x<\frac{1}{3}\right\}$ then $-2 \notin A$ and $-1 \in A$, which violates property (ii), and A is not a Dedekind cut.
(b) If $A=\left\{x \in \mathbb{Q}: x>\frac{1}{3}\right\}$ then A is not bounded above - because $\mathbb{Z}_{+} \subset A$, for example - which violates property (i), and A is not a Dedekind cut.
c)

$$
A=\left\{x \in \mathbb{Q}: x^{2}+2 x+3<0\right\}=\left\{x \in \mathbb{Q}:(x+1)^{2}+2<0\right\}=\emptyset
$$

So $A=\emptyset$, and property (i) is violated, and A is not a Dedekind cut.

Let A be a Dedekind cut, and define

$$
B=\{-x: x \in \mathbb{Q} \wedge x \notin A\}
$$

$B \neq \emptyset$ because $-x \in B$ for any $x \in \mathbb{Q} \backslash A$. There is at least one such x because A is bounded above.
If $y \in B$ and $z \in A$ then $z<-y$ because if $-y \leq z$ then by property (ii) for A we have $-y \in A$ and $-(-y) \notin B$. So for any $z \in A$ we have $y<-z$ for all $y \in B$, and so B is bounded above by $-z$ for any $z \in A$.

Theory from lectures
4 marks

Standard examples
4 marks

2 marks

Example from lectures but not expected to be done from memory.
5 marks

15 marks in total
12. A is finite if either A is empty, or, for some $n \in \mathbb{Z}_{+}$, there is a bijection $f:\{k \in \mathbb{N}: k<n\} \rightarrow A$. For a fixed set A, there is at most one $n \in \mathbb{Z}_{+}$for which such a bijection exists, and if there is such an n then A is said to be of cardinality n. The empty set is said to be of cardinality 0 .
A is countable if either A is finite or there is a bijection $f: \mathbb{N} \rightarrow A$.
A is countable, B is uncountable, C is countable and D is uncountable.
$f(x)=e^{x}$ will do, but of course there are many other examples. The inverse function is $\ln :(0, \infty) \rightarrow \mathbb{R}$.

Define $g: \mathbb{N} \rightarrow \mathbb{Z}$ by

$$
g(n)=\left\{\begin{array}{c}
n / 2 \text { if } \mathrm{n} \text { is even } \\
-(n+1) / 2 \text { if } n \text { is odd }
\end{array}\right.
$$

Now

$$
n / 2=p \Leftrightarrow n=2 p
$$

and

$$
-(n+1) / 2=p \Leftrightarrow-n-1=2 p \Leftrightarrow n=-2 p-1 \text {. }
$$

So if we define $h: \mathbb{Z} \rightarrow \mathbb{N}$ by

$$
h(p)=\left\{\begin{array}{c}
2 p \text { if } p \geq 0 \\
-2 p-1 \text { if } p<0
\end{array}\right.
$$

then $g(n)=p \Leftrightarrow h(p)=n$ and hence $g(h(p))=p$ for all $p \in \mathbb{Z}$ and $h(g(n))=n$ for all $n \in \mathbb{N}$.

