Solutions to MATH105 exam January 2014
 Section A

1 mark	1a) $2<3$ or $5<4$. This is true.
2 marks	b) $2>3$ and $4 \leq 5$. This is false.
$2 \text { marks }$	c) If x is rational then x is an integer. This is false. For example, 0.5 is rational, but not an integer.
2 marks	d) There exists a real number x such that $x^{2}+2 x+1<0$. This is false, because $x^{2}+2 x+1=(x+1)^{2} \geq 0$.
Standard homework exercises 7 marks in total. No reasons required.	
1 mark	2a) $2 \geq 3 \wedge 5 \geq 4$.
1 mark	b) $2 \leq 3 \vee 4>5$
2 marks	c) $\exists x \in \mathbb{Q}, x \notin \mathbb{Z}$.
2 marks	d) $\forall x \in \mathbb{R}, x^{2}+2 x+1 \geq 0$.
Standard homework exercises. 6 marks in total.	
1 mark	3. Base case: When $n=0,1<\frac{3}{2}=x_{0}<2$, so $1<x_{0}<2$ is true when $n=0$.
4 marks	Inductive step: Suppose that $n \geq 0$ and $1<x_{n}<2$. Then $\frac{2}{3}+\frac{1}{3}<\frac{2}{3} x_{n}+\frac{1}{3}=x_{n+1}<\frac{4}{3}+\frac{1}{3}=\frac{5}{3}<2 .$
	So if $n \geq 0,1<x_{n}<2 \Rightarrow 1<x_{n+1}<2$.
1 mark	So, by induction, $1<x_{n}<2$ for all integers $n \geq 0$.
Standard homework exercise. 6 marks in total.	
2 marks	4. If m and n are integers, then m divides n if $n=m k$ for some integer k.
4 marks	If m, n and p are all integers, then $n=m k_{1}$ and $p=n k_{2}$ for integers k_{1} and k_{2}. So $p=n k_{2}=m k_{1} k_{2}=m\left(k_{1} k_{2}\right)$. Then since $k_{1} k_{2}$ is an integer, m divides p.
Bookwork 6 marks in total	

Standard theory. 2 marks 2 marks
Standard theory followed by standard homework exercise
4 marks
1 mark
1 mark
1 mark
1 mark
2 marks
Bookwork followed by standard homework exercises.
6 marks
8. A real number x is algebraic if there are $n \in N$ and integers a_{i}, for $0 \leq i \leq n$, such that $\sum_{i=0}^{n} a_{i} x^{i}=0$.
If $x=1+\sqrt{2}$ then $(x-1)^{2}=2$, that is, $x^{2}-2 x-1=0$.
9. $f: X \rightarrow Y$ is injective if, for any x_{1} and $x_{2} \in X, f\left(x_{1}\right)=$ $f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$
A is countable if A is empty or there is an injective map $f: A \rightarrow \mathbb{N}$.
We can also take the codomain to be \mathbb{Z} or \mathbb{Z}_{+}.
a) Uncountable.
b) Countable.
c) Countable.

Section B

Theory from lectures 3 marks

Theory from lectures.
2 marks
Standard homework exercise 2 marks

Standard homework exercise. 3 marks

Standard exercise, with notation likely to prove more challenging 3 marks
Harder exercise, not previously set.
2 marks

15 marks in total.
10. \sim is reflexive if

$$
x \sim x \forall x \in X
$$

\sim is symmetric if

$$
x \sim y \Rightarrow y \sim x \forall x, y \in X
$$

\sim is transitive if

$$
(x \sim y \wedge y \sim z) \Rightarrow x \sim z \forall x, y, \in X
$$

The equivalence class $[x]$ of x is the set $\{y \in X: y \sim x\}$.
a) $n \mid n$ for all integers n. So \sim is reflexive. However $1 \mid 2$ and $2 \mid 1$ so \sim is not symmetric and not an equivalence relation.
b) 5 divides $0=n-n$ for any $n \in \mathbb{Z}$. So \sim is reflexive If $5 \mid m-n$ then $m-n=5 k$ for some $k \in \mathbb{Z}$ and $n-m=5(-k)$ and sinc $\mathrm{e}-k \in \mathbb{Z}$ we have $5 \mid(n-m)$. So $m \sim n \Rightarrow n \sim m$ and \sim is symmetric. If $5 \mid(m-n)$ and $5 \mid(n-p)$ when $m-n=5 k_{1}$ amd $n-p=5 k_{2}$ for some $k_{1}, k_{2} \in \mathbb{Z}$, and $m-p=5\left(k_{1}+k_{2}\right.$, and $k_{1}+k_{2} \in \mathbb{Z}$, and $5 \mid(m-p)$. So $(m \sim n \wedge n \sim p) \Rightarrow m \sim p$ and \sim is transitive. So \sim is an equivalence relation.
c) If $f(x)$ is any polynomial, $f(0)=f(0)$. So \sim is reflexive. If $f(x)$ and $g(x)$ are any polynomials and $f(0)=g(0)$, then $g(0)=f(0)$. So $f(x) \sim g(x) \Rightarrow g(x) \sim f(x)$ and \sim is symmetric. If $f(x), g(x)$ and $h(x)$ are any three polynomials, and $f(0)=g(0)$ and $g(0)=h(0)$, then $f(0)=h(0)$. So $(f(x) \sim g(x) \wedge g(x) \sim h(x)) \Rightarrow f(x) \sim h(x)$ and \sim is transitive. So \sim is an equivalence relation.
Write $f(x)=x^{2}-x$. Then $f(0)=0$. So $[f(x)]=\{h(x): h(0)=0$. Now if $h(x)=\sum_{i=0}^{n} a_{i} x^{n}$ then

$$
\begin{aligned}
h(0)=0 \Leftrightarrow & a_{0}=0 \Leftrightarrow\left(h(x)=x \sum_{i=1}^{n} a_{i} x^{i-1} \vee(n=0 \wedge h(x)=0)\right. \\
& \Leftrightarrow h(x)=x g(x) \text { for some polynomial } g(x)
\end{aligned}
$$

Standard homework exercise 1 mark 4 marks

1 mark
Theory from lectures

Unseen, but similar to a step in 2 proofs from lectures.
3 marks

Unseen but with some similarity to some homework exercises. 1 mark 4 marks

11a) Base case: $2^{2}-1=3$. So $n<2^{n}-1$ holds for $n=2$.

Inductive step: Suppose that for some $n \in \mathbb{Z}_{+}$we have $n<2^{n}-1$. Then, for all $n \geq 2$,

$$
2^{n+1}-1=2 \times 2^{n}-1>2 n-1=n+n-1 \geq n+1
$$

So $n<2^{n}-1 \Rightarrow n+1<2^{n+1}-1$
So by induction $n<2^{n}-1$ is true for all integers $n \geq 2$.
b) $\prod_{i=1}^{n} p_{i}$ is divisible by p_{i} for all $1 \leq i \leq n$, and hence $1+\prod_{i=1}^{n} p_{i}$ is not divisible by p_{i} for any $1 \leq i \leq n$. But by the Fundamental Theorem of Arithmetic, it must be divisible by some prime p_{i} with $i \geq n+1$. So $p_{n+1} \leq 1+\prod_{i=1}^{n} p_{i}$.

Base case: $1+\prod_{i=1}^{1} p_{i}=2<3=4-1=2^{2^{1}}-1$, so the base case $n=1$ is true.

Inductive step Fix $n \in \mathbb{Z}_{+}$and suppose that $\prod_{i=1}^{n} p_{i}<2^{2^{n}}-1$. Then $p_{n+1} \leq 1+\prod_{i=1}^{n} p_{i}<2^{2^{n}}$. So

$$
\begin{gathered}
\prod_{i=1}^{n+1} p_{i}=\prod_{i=1}^{n} p_{i} \times p_{n+1}<\left(2^{2^{n}}-1\right) \times 2^{2^{n}}=2^{2^{n}} \times 2^{2^{n}}-2^{2^{n}} \\
\leq 2^{2^{n+1}}-4<2^{2^{n+1}}-1
\end{gathered}
$$

So true for n implies true for $n+1$, and, by induction, $\prod_{i=1}^{n} p_{i}<2^{2^{n}}-1$ for all $n \in \mathbb{Z}_{+}$

Bookwork 4 marks

Bookwork, some similar exercises 3 marks

Bookwork
3 marks

Standard exercise 3 marks

2 marks

15 marks in total.
$12 f: X \rightarrow Y$ is injective if, for all x_{1} and $x_{2} \in X$,

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2} .
$$

$f: X \rightarrow Y$ is surjective if $\operatorname{Im}(f)=Y$ where $\operatorname{Im}(f)$ is defined to be the set $\{f(x): x \in X . f: X \rightarrow Y$ is a bijection if it is both injective and surjective.
Suppose that $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both injective and suppose that x_{1} and $x_{2} \in X$ and $g \circ f\left(x_{1}\right)=g \circ f\left(x_{2}\right)$, that is, $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$. Then since g is injective we have $f\left(x_{1}\right)=$ $f\left(x_{2}\right)$, and since f is injective, we have $x_{1}=x_{2}$. So $g \circ f$ is injective. Schröder Bernstein Theorem Suppose that X and Y are sets and there are injective maps $f: X \rightarrow Y$ and $g: y \rightarrow X$. Then there is a bijection $h: X \rightarrow Y$.
$f:(0,1] \rightarrow[0,1]$ is injective where $f(x)=x$, for all $x \in(0,1]$. Also, $g:[0,1] \rightarrow(0,1]$ is injective, where $g(x)=(x+1) / 2$ for all $x \in[0,1]$. Note that $\frac{1}{2} \leq g(x) \leq 1$ for all $x \in[0,1]$. So by the Schröder Bernstein theorem, there is a bijection between $(0,1]$ and $[0,1]$.
Suppose that A_{n} is countable for all n. Then there is an injective map $f_{n}: A_{n} \rightarrow \mathbb{Z}_{+}$. Let $g: \mathbb{Z}_{+}^{2} \rightarrow \mathbb{Z}_{+}$be a bijection. Then define $h(x)=g\left(f_{n}(x), n\right)$ for $x \in A_{n}$, for each $n \in \mathbb{Z}_{+}$. Then $h: \cup_{n=1}^{\infty} A_{n} \rightarrow \mathbb{Z}_{+}$is injective

Theory from lectures 4 marks

Similar to homework exercises. 1 mark 3 marks

5 marks

2 marks
15 marks in total
13. A set $A \subset \mathbb{Q}$ is a Dedekind cut if
(i) $A \neq \emptyset$
(ii) $\mathbb{Q} \backslash A \neq \emptyset$
(iii) $x \in A \wedge y \in \mathbb{Q} \wedge y<x \Rightarrow y \in A$;
(iv) A does not have a maximal element.
a) $6 \in A$ but $4 \notin A$. So property (iii) does not hold and A is not a Dedekind cut
b) $0 \in A$ and $6 \notin A$, so properties (i) and (ii) hold. If $x<5$ and $y \in \mathbb{Q}$ and $y<x$ then $y<5$, so property (iii) holds. Finally A does not have a maximal element. For suppose $a \in A$. Then $a<5$ and hence $a<(a+5) / 2<5$. So if $a \in A$ we also have $(a+5) / 2 \in A$, and a cannot be maximal in A. So A is a Dedekind cut
c) $0 \in A$ and $3 \notin A$. So properties (i) and (ii) hold for A. Now let $x \in A$ and let $y \in \mathbb{Q}$ and $y<x$. If $y<0$ the $y \in A$. If $0 \leq y<x$ then $0 \leq y^{2}<x^{2}<5$, and, once again, $y \in A$. So property (iii) holds for A. Now suppose $a \in A$. If $a<2$ the x is not maximal because $2 \in A$. So suppose $a \geq 2$. We also have $a<3$ because if $a \geq 3$ then $a^{2} \geq 9>5$. Now if $\varepsilon \in \mathbb{Q}$ and $1>\varepsilon>0$ then $(a+\varepsilon)^{2}=a^{2}+2 a \varepsilon+\varepsilon^{2}<a^{2}+7 \varepsilon$. So if $0<\varepsilon \leq\left(5-a^{2}\right) / 8$ we see that $(a+\varepsilon)^{2}<5$ and a is not maximal in A. So property (iv) holds for A and A is a Dedekind cut.
(iv) $0 \in A$ but $-3 \notin A$ so property (iii) is violated and A is not a Dedekind cut.

