Solutions to MATH105 exam January 2014 Section A

1 mark 2 marks 2 marks 2 marks 2 marks Standard home- work exercises 7 marks in to- tal. No reasons required.	1a) $2 < 3$ or $5 < 4$. This is true. b) $2 > 3$ and $4 \le 5$. This is false. c) If x is rational then x is an integer. This is false. For example, 0.5 is rational, but not an integer. d) There exists a real number x such that $x^2 + 2x + 1 < 0$. This is false, because $x^2 + 2x + 1 = (x + 1)^2 \ge 0$.
1 mark 1 mark 2 marks 2 marks Standard home- work exercises. 6 marks in total.	2a) $2 \ge 3 \land 5 \ge 4$. b) $2 \le 3 \lor 4 > 5$. c) $\exists x \in \mathbb{Q}, x \notin \mathbb{Z}$. d) $\forall x \in \mathbb{R}, x^2 + 2x + 1 \ge 0$.
1 mark 4 marks 1 mark Standard home- work exercise. 6 marks in total.	3. Base case : When $n = 0, 1 < \frac{3}{2} = x_0 < 2$, so $1 < x_0 < 2$ is true when $n = 0$. Inductive step : Suppose that $n \ge 0$ and $1 < x_n < 2$. Then $\frac{2}{3} + \frac{1}{3} < \frac{2}{3}x_n + \frac{1}{3} = x_{n+1} < \frac{4}{3} + \frac{1}{3} = \frac{5}{3} < 2$. So if $n \ge 0, 1 < x_n < 2 \Rightarrow 1 < x_{n+1} < 2$. So, by induction, $1 < x_n < 2$ for all integers $n \ge 0$.
2 marks 4 marks Bookwork 6 marks in total	4. If m and n are integers, then m divides n if $n = mk$ for some integer k. If m, n and p are all integers, then $n = mk_1$ and $p = nk_2$ for integers k_1 and k_2 . So $p = nk_2 = mk_1k_2 = m(k_1k_2)$. Then since k_1k_2 is an integer, m divides p.

1 mark 1 mark 1 mark Standard home- work exercises. 3 marks in total.	5a) $((0,2] \cup [1,3]) \cup [2,4] = (0,3] \cup [2,4] = (0,4]$ b) $(0,2] \cap [1,3]) \cup [2,4] = [1,2] \cup [2,4] = [1,4].$ c) $((0,2] \cap [1,3]) \setminus [2,4] = [1,2] \setminus [2,4] = [1,2).$
	6. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
4 marks 1 mark 1 mark 1 mark 2 marks Standard home- work exercise. 9 marks in total	As a result of this: (i) the g.c.d. d is 13; (ii) from the first row of the last matrix, $m_1 = 78$ and $n_1 = 35$; (iii) from the second row of either of the last two matrices $a = -13$ and $b = 29$; (iv) The l.c.m. is $1014 \times 35 = 35490$.
 1 mark 2 marks 2 marks 3 marks 3 marks Standard theory followed by two standard homework exercise and bookwork which was set in homework. 8 marks in total. 	7. The image of f , $\operatorname{Im}(f)$, is $\{f(x) : x \in X\}$. a) $y = 2x + 1 \Leftrightarrow x = (y - 1)/2$. So in this case every real number y is in the image, and $\operatorname{Im}(f) = \mathbb{R}$. b) We have $0 \le (y - 1)/2 \le 1 \Leftrightarrow 0 \le y - 1 \le 2 \Leftrightarrow 1 \le y \le 3$. So in this case, with $X = [0, 1]$, we have $\operatorname{Im}(f) = [1, 3]$. By definition, $\operatorname{Im}(g \circ f) = \{g(f(x)) : x \in X\}$. Since $f(x) \in Y$ for all $x \in X$, we see that $\operatorname{Im}(g \circ f) \subset \{g(y) : y \in Y\} = \operatorname{Im}(g \circ f)$.

Standard theory. 2 marks 2 marks Standard theory followed by stan- dard homework	8. A real number x is algebraic if there are $n \in N$ and integers a_i , for $0 \le i \le n$, such that $\sum_{i=0}^n a_i x^i = 0$. If $x = 1 + \sqrt{2}$ then $(x - 1)^2 = 2$, that is, $x^2 - 2x - 1 = 0$.
exercise	
4 marks	
1 mark	9. $f: X \to Y$ is injective if, for any x_1 and $x_2 \in X$, $f(x_1) =$
1 mark	$f(x_2) \Rightarrow x_1 = x_2$ A is countable if A is empty or there is an injective map $f : A \to \mathbb{N}$. We can also take the codomain to be \mathbb{Z} or \mathbb{Z}_+ .
1 mark	a) Uncountable.
1 mark	b) Countable.
2 marks	c) Countable.
Bookwork fol-	
lowed by stan-	
dard homework	
exercises.	
6 marks	

Section B		
Theory from lec- tures 3 marks	10. \sim is reflexive if $x \sim x \forall x \in X$ \sim is symmetric if	
	$x \sim y \Rightarrow y \sim x \ \forall x, y \in X.$	
	\sim is <i>transitive</i> if	
	$(x \sim y \land y \sim z) \Rightarrow x \sim z \forall x, y, \in X.$	
Theory from lec- tures.	The equivalence class $[x]$ of x is the set $\{y \in X : y \sim x\}$.	
2 marks Standard home- work exercise 2 marks	a) $n \mid n$ for all integers n . So \sim is <i>reflexive</i> . However $1 \mid 2$ and $2 \mid / 1$ so \sim is not symmetric and not an equivalence relation.	
Standard home- work exercise. 3 marks	b) 5 divides $0 = n - n$ for any $n \in \mathbb{Z}$. So \sim is reflexive If $5 \mid m - n$ then $m - n = 5k$ for some $k \in \mathbb{Z}$ and $n - m = 5(-k)$ and sinc $e - k \in \mathbb{Z}$ we have $5 \mid (n - m)$. So $m \sim n \Rightarrow n \sim m$ and \sim is symmetric. If $5 \mid (m - n)$ and $5 \mid (n - p)$ when $m - n = 5k_1$ and $n - p = 5k_2$ for some $k_1, k_2 \in \mathbb{Z}$, and $m - p = 5(k_1 + k_2)$, and $k_1 + k_2 \in \mathbb{Z}$, and $5 \mid (m - p)$. So $(m \sim n \land n \sim p) \Rightarrow m \sim p$ and \sim is transitive. So \sim is an equivalence relation.	
Standard ex- ercise, with notation likely to prove more challenging 3 marks Harder exercise, not previously set. 2 marks	c) If $f(x)$ is any polynomial, $f(0) = f(0)$. So ~ is reflexive. If $f(x)$ and $g(x)$ are any polynomials and $f(0) = g(0)$, then $g(0) = f(0)$. So $f(x) \sim g(x) \Rightarrow g(x) \sim f(x)$ and ~ is symmetric. If $f(x)$, $g(x)$ and h(x) are any three polynomials, and $f(0) = g(0)$ and $g(0) = h(0)$, then $f(0) = h(0)$. So $(f(x) \sim g(x) \land g(x) \sim h(x)) \Rightarrow f(x) \sim h(x)$ and ~ is transitive. So ~ is an equivalence relation. Write $f(x) = x^2 - x$. Then $f(0) = 0$. So $[f(x)] = \{h(x) : h(0) = 0$. Now if $h(x) = \sum_{i=0}^{n} a_i x^n$ then	
	$h(0) = 0 \iff a_0 = 0 \iff (h(x) = x \sum_{i=1}^n a_i x^{i-1} \lor (n = 0 \land h(x) = 0)$ $\Leftrightarrow h(x) = xg(x) \text{ for some polynomial } g(x).$	
15 marks in to- tal.		

11a) Base case: $2^2 - 1 = 3$. So $n < 2^n - 1$ holds for n = 2. Standard homework exercise 1 mark 4 marks Inductive step: Suppose that for some $n \in \mathbb{Z}_+$ we have $n < 2^n - 1$. Then, for all $n \ge 2$, $2^{n+1} - 1 = 2 \times 2^n - 1 > 2n - 1 = n + n - 1 > n + 1$ So $n < 2^n - 1 \Rightarrow n + 1 < 2^{n+1} - 1$ So by induction $n < 2^n - 1$ is true for all integers $n \ge 2$. 1 mark Theory from lectures b) $\prod_{i=1}^{n} p_i$ is divisible by p_i for all $1 \le i \le n$, and hence $1 + \prod_{i=1}^{n} p_i$ Unseen, but simis not divisible by p_i for any $1 \le i \le n$. But by the Fundamental ilar to a step in 2 Theorem of Arithmetic, it must be divisible by some prime p_i with proofs from lec $i \ge n+1$. So $p_{n+1} \le 1 + \prod_{i=1}^{n} p_i$. tures. 3 marks Base case: $1 + \prod_{i=1}^{1} p_i = 2 < 3 = 4 - 1 = 2^{2^1} - 1$, so the base case Unseen but with some similarity n = 1 is true. to some homework exercises. 1 mark Inductive step Fix $n \in \mathbb{Z}_+$ and suppose that $\prod_{i=1}^n p_i < 2^{2^n} - 1$. Then $p_{n+1} \leq 1 + \prod_{i=1}^n p_i < 2^{2^n}$. So 4 marks $\prod_{i=1}^{n+1} p_i = \prod_{i=1}^{n} p_i \times p_{n+1} < (2^{2^n} - 1) \times 2^{2^n} = 2^{2^n} \times 2^{2^n} - 2^{2^n}$ $\leq 2^{2^{n+1}} - 4 < 2^{2^{n+1}} - 1.$ So true for n implies true for n + 1, and, by induction, 1 mark $\prod_{i=1}^{n} p_i < 2^{2^n} - 1 \text{ for all } n \in \mathbb{Z}_+$

15 marks in total

Bookwork	12 $f: X \to Y$ is <i>injective</i> if, for all x_1 and $x_2 \in X$,
4 marks	$f(x_1) = f(x_2) \Rightarrow x_1 = x_2.$
	$f: X \to Y$ is surjective if $\text{Im}(f) = Y$ where $\text{Im}(f)$ is defined to be the set $\{f(x) : x \in X. \ f : X \to Y \text{ is a bijection if it is both}$ injective and surjective.
Bookwork, some	Suppose that $f: X \to Y$ and $g: Y \to Z$ are both injective
similar exercises	and suppose that x_1 and $x_2 \in X$ and $g \circ f(x_1) = g \circ f(x_2)$, that
3 marks	is, $g(f(x_1)) = g(f(x_2))$. Then since g is injective we have $f(x_1) =$
	$f(x_2)$, and since f is injective, we have $x_1 = x_2$. So $g \circ f$ is injective.
Bookwork	Schröder Bernstein Theorem Suppose that X and Y are sets and
3 marks	there are injective maps $f: X \to Y$ and $g: y \to X$. Then there is
	a bijection $h: X \to Y$.
Standard exer-	$f: (0,1] \rightarrow [0,1]$ is injective where $f(x) = x$, for all $x \in (0,1]$.
cise	Also, $g: [0,1] \to (0,1]$ is injective, where $g(x) = (x+1)/2$ for all
3 marks	$x \in [0,1]$. Note that $\frac{1}{2} \leq g(x) \leq 1$ for all $x \in [0,1]$. So by the
	Schröder Bernstein theorem, there is a bijection between $(0, 1]$ and
	[0,1].
2 marks	Suppose that A_n is countable for all n . Then there is an injective
	map $f_n : A_n \to \mathbb{Z}_+$. Let $g : \mathbb{Z}_+^2 \to \mathbb{Z}_+$ be a bijection. Then
	define $h(x) = g(f_n(x), n)$ for $x \in A_n$, for each $n \in \mathbb{Z}_+$. Then
	$h: \bigcup_{n=1}^{\infty} A_n \to \mathbb{Z}_+$ is injective
15 marks in to- tal.	

	13. A set $A \subset \mathbb{Q}$ is a <i>Dedekind cut</i> if
tures 4 marks	(i) $A \neq \emptyset$
	(i) $A \neq \emptyset$ (ii) $\mathbb{Q} \setminus A \neq \emptyset$ (iii) $x \in A \land y \in \mathbb{Q} \land y < x \Rightarrow y \in A;$ (iv) A does not have a maximal element.
	(iii) $x \in A \land y \in \mathbb{Q} \land y < x \Rightarrow y \in A;$
	(iv) A does not have a maximal element.
Similar to home-	
work exercises.	
1 mark	a) $6 \in A$ but $4 \notin A$. So property (iii) does not hold and A is not a Dedekind cut
3 marks	b) $0 \in A$ and $6 \notin A$, so properties (i) and (ii) hold. If $x < 5$ and $y \in \mathbb{Q}$ and $y < x$ then $y < 5$, so property (iii) holds. Finally A does not have a maximal element. For suppose $a \in A$. Then $a < 5$ and hence $a < (a + 5)/2 < 5$. So if $a \in A$ we also have $(a + 5)/2 \in A$, and a cannot be maximal in A. So A is a Dedekind cut
5 marks	c) $0 \in A$ and $3 \notin A$. So properties (i) and (ii) hold for A . Now let $x \in A$ and let $y \in \mathbb{Q}$ and $y < x$. If $y < 0$ the $y \in A$. If $0 \le y < x$ then $0 \le y^2 < x^2 < 5$, and, once again, $y \in A$. So property (iii) holds for A . Now suppose $a \in A$. If $a < 2$ the x is not maximal because $2 \in A$. So suppose $a \ge 2$. We also have $a < 3$ because if $a \ge 3$ then $a^2 \ge 9 > 5$. Now if $\varepsilon \in \mathbb{Q}$ and $1 > \varepsilon > 0$ then $(a + \varepsilon)^2 = a^2 + 2a\varepsilon + \varepsilon^2 < a^2 + 7\varepsilon$. So if $0 < \varepsilon \le (5 - a^2)/8$ we see that $(a + \varepsilon)^2 < 5$ and a is not maximal in A . So property (iv) holds for A and A is a Dedekind cut.
2 marks	(iv) $0 \in A$ but $-3 \notin A$ so property (iii) is violated and A is not a Dedekind cut.
15 marks in total	