Solutions to MATH105 exam January 2013

Section A

1 mark
2 marks
2 marks
2 marks
Standard home-
work exercises
7 marks in to-
tal. No reasons
required.

2 marks
4 marks

Standard homework exercises. 6 marks in total.

1 mark

4 marks

1 mark
Standard homework exercise. 6 marks in total.

2a) $x^{2}<9 \Leftrightarrow-3<x<3$. So $\left\{x: x^{2}<9\right\}=(-3,3)$.
b) For $\frac{x}{x+2}>3$ either both x and $x+2$ have to be >0 or both <0. If they are both positive we must have, in addition, $x>3 x+6$, that is, $x<-3$, which is inconsistent with $x>0$. If both are negative, we must have, in addition, $x<3 x+6$, that is, $x>-3$. So we must have $-3<x<-2$, that is,

$$
\left\{x \in \mathbb{R}: \frac{x}{x+2}>3\right\}=(-3,-2) \text {. }
$$

1.a) 1.5 is an integer

This is false.
b) If x is a real number and $x^{2} \leq 0$, then $x=0$

This is true, because if x is a non-zero real number, $x^{2}>0$.
c) For any integer $n, 2$ divides n or $n-1$.

This is true.
d) $0 \leq x \leq 1$ if and only if $0 \leq x^{2} \leq 1$: false because $0 \leq(-1)^{2} \leq 1$ (for example).
3. Base case: When $n=3$ both n^{3} and 3^{n} are 3^{3}, so $n^{3} \leq 3^{n}$ is true when $n=3$
Inductive step: Suppose that $n \geq 3$ and $n^{3} \leq 3^{n}$. Then
$(n+1)^{3}=n^{3} \times\left(1+\frac{1}{n}\right)^{3} \leq n^{3} \times\left(\frac{4}{3}\right)^{3}=\frac{64}{27} n^{3} \leq 2 n^{3} \leq 2 \times 3^{n}<3^{n+1}$.
So if $n \geq 3, n^{3} \leq 3^{n} \Rightarrow(n+1)^{3} \leq 3^{n+1}$.
So, by induction, $n^{3} \leq 3^{n}$ for all integers $n \geq 3$

6 marks	4. $1989=9 \times 221=3^{2} \times 13 \times 17$. So the divisors of 1989 are $3^{k_{1}} \times 13^{k_{2}} \times 17^{k_{3}}$ for integers $0 \leq k_{1} \leq 2,0 \leq k_{2} \leq 1,0 \leq k_{3} \leq 2$, that is, $1,3,9,13,39,117,17,51153,221,663,1989$.
Standard homework exercises. 6 marks in total.	
2 marks	5. $n \in \mathbb{Z}$ is even $\Leftrightarrow n=2 k$ for some $k \in \mathbb{Z} \Rightarrow n^{2}=4 k^{2}=2(2 k)^{2}$ $\Rightarrow n^{2}$ is even. n not even $\Rightarrow n-1$ is even $\Rightarrow n-1=2 k$ for some $k \in \mathbb{Z} \Rightarrow$ $n=2 k+1 \Rightarrow n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1 \Rightarrow$ n^{2} is not even.
Bookwork. 5 marks in total.	
	6.
4 marks	
$\begin{aligned} & 1 \text { mark } \\ & 1 \text { mark } \\ & 1 \text { mark } \end{aligned}$	As a result of this: (i) the g.c.d. d is 7 ; (ii) from the first row of the last matrix, $m_{1}=89$ and $n_{1}=33$; (iii) from the second row of either of the last two matrices $a=-10$ and $b=27$;
2 marks Standard homework exercise. 9 marks in total	(iv) The l.c.m. is $623 \times 33=20559$.

2 marks $\quad 7 f: X \rightarrow Y$ is injective if $\forall x_{1}, x_{2} \in X, f\left(x_{1}\right)=f\left(x_{2}\right) \Leftrightarrow x_{1}=x_{2}$. 2 marks The image of $f, \operatorname{Im}(f)$ is $\{f(x): x \in X\} . f$ is a bijection if f is injective and $\operatorname{Im}(f)=Y$, that is, f is also surjective
4 marks
$y=\frac{x+1}{x+2} \Leftrightarrow x+1=y(x+2) \Leftrightarrow x(1-y)=2 y-1 \Leftrightarrow x=\frac{2 y-1}{1-y}$.
It follows that f is injective. Also, we see that $x>0 \Leftrightarrow \frac{1}{2}<y<1$. So $\operatorname{Im}(f)=\left(\frac{1}{2}, 1\right)$.
Standard theory followed by standard homework exercise.
8 marks in total.

Standard theory. 2 marks

3 marks
8. (i)

$$
\frac{x+2}{x+3}=10 \Leftrightarrow x+2=10 x+30 \Leftrightarrow x=-\frac{28}{9}
$$

So x is rational.
(ii)

$$
\frac{2}{y+2}=1-\frac{1}{y+1} \Leftrightarrow 2(y+1)=(y+1)(y+2)-(y+2) \Leftrightarrow 2 y+2=y^{2}+3 y+2-y-
$$

Standard homework exercises.
$\frac{5 \mathrm{marks}}{1 \mathrm{mark}}$
1 mark
1 mark
Standard homework exercises.
3 marks

Section B

Theory from lectures 3 marks

Theory from lectures.
2 marks
Standard homework exercise 3 marks

Standard homework exercise.
1 mark
Harder exercise, not previously set.
4 marks

Harder exercise, not previously set.
2 marks

15 marks in total.
10. \sim is reflexive if

$$
x \sim x \forall x \in X
$$

\sim is symmetric if

$$
x \sim y \Rightarrow y \sim x \forall x, y \in X
$$

\sim is transitive if

$$
(x \sim y \wedge y \sim z) \Rightarrow x \sim z \forall x, y, \in X
$$

The equivalence class $[x]$ of x is the set $\{y \in X: y \sim x\}$.
(i) $n-n=0=3 \times 0$. So $n \sim n \forall n \in \mathbb{Z}$ and \sim is reflexive. If $m \sim n$ then $m-n=3 r$ for $r \in \mathbb{Z}$, and hence $n-m=3(-r)$ for $-r \in \mathbb{Z}$ and $n \sim m$. So \sim is symmetric If $m \sim n$ and $n \sim p$, then $m-n=3 r$ and $n-p=3 s$ for some $r, s \in \mathbb{Z}$, and hence $m-p=m-n+(n-p)=3(r+s)$. So \sim is transitive and \sim is an equivalence relation.
(ii) For any $n \in \mathbb{Z}, n-n=0 \neq 3 k+1$ for any $k \in \mathbb{Z}$. So \sim is not reflexive and is not an equivalence relation.
(iii) $\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right) \sim\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right)$ because $c_{1}=c_{1}$. So \sim is reflexive.

Since $c_{1}=c_{2} \Leftrightarrow c_{2}=c_{1}$, we have

$$
\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right) \sim\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right) \Leftrightarrow\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right) \sim\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)
$$

and \sim is symmetric.
Since $c_{1}=c_{2} \wedge c_{2}=c_{3} \Rightarrow c_{1}=c_{3}$, we have:
$\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right) \sim\left(\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right) \wedge\left(\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right) \sim\left(\begin{array}{ll}a_{3} & b_{3} \\ c_{3} & d_{3}\end{array}\right) \Rightarrow\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right) \sim\left(\begin{array}{ll}a_{3} & b_{3} \\ c_{3} & d_{3}\end{array}\right)$,
and \sim is transitive.
The equivalence class of $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ is

$$
\left\{\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right): a, b, d \in \mathbb{R}\right\}
$$

Standard homework exercise 1 mark 4 marks

1 mark
Unseen: corresponding case of even and odd integers proved in lectures as an example of induction.
1 mark
4 marks

1 mark

3 marks

15 marks in total

11(i) Base case: $1=1 \times(1+1) / 2$. So the formula holds for $n=1$

Inductive step: Suppose that for some $n \in \mathbb{Z}_{+}$we have $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$. Then

$$
\begin{gathered}
\sum_{k=1}^{n+1} k=\sum_{k=1}^{n} k+n+1=\frac{n(n+1)}{2}+n+1=(n+1)\left(\frac{n}{2}+1\right) \\
=\frac{(n+1)(n+2)}{2}=\frac{(n+1)(n+1+1)}{2}
\end{gathered}
$$

So

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2} \Rightarrow \sum_{k=1}^{n+1} k=\frac{(n+1)(n+1+1)}{2}
$$

So by induction $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$ holds for all $n \in \mathbb{Z}_{+}$.
(ii) Base case: 0 is divisible by 3 . So the statement is true for $n=0$.

Inductive step: Suppose that exactly one of $n, n-1$ and $n+1$ is divisible by 3 . Since $n+2=(n-1)+3$ is divisible by 3 if and only if $n-1$ is, exactly one of $n, n-1$ and $n+1$ is divisible by 3 if and only if exactly one of $n=(n+1)-1$ and $n+2=(n+1)+1$ and $n+1$ is divisible by 3 . So if the statement is true for n, it is true for $n+1$.
So by induction, for all $n \in \mathbb{N}$, exactly one of $n, n-1$ and $n+1$ is divisible by 3 .
If $n \in \mathbb{N}$ is divisible by 3 then $n=3 k$ for some $k \in \mathbb{N}$. If $n \in \mathbb{N}$ and $n+1$ is divisible by 3 then $n+1=3 k$ for some $k \in \mathbb{Z}_{+} \subset N$ and $n=3 k-1$ for some $k \in \mathbb{Z}_{+}$. If $n-1$ is divisible by 3 and $n \in \mathbb{N}$ then $n>0$ and $n-1=3 k$ for some $k \in N$, and $n=3 k+1$ for some $k \in \mathbb{N}$.

Theory from lectures
2 marks

Standard homework exercises. 2 marks

2 marks

1 mark

2 marks

2 marks

2 marks

2 marks

15 marks in total.

12(i) The inclusion/exclusion principle to two finite sets A and B is that

$$
|A \cup B|=|A|+|B|-|A \cap B| .
$$

(ii) If B is the set of people who bought bread and A is the set of people who bought another item, then $|B|=66,|A|=128 \mid$ and $|A \cup B|=150$. The set of people who bought both bread and another item is $A \cap B$, and from (i) we have

$$
|A \cap B|=|A|+|B|-|A \cup B|=128+66-150=44
$$

(iii) The set of people who bought only bread is $B \backslash A$. we have

$$
|B \backslash A|=|B|-|B \cap A|=66-44=22
$$

(iv) The set of people not buying bread is $A \backslash B=(A \cup B) \backslash B$, so we have

$$
|A \backslash B|=|A \cup B|-|B|=150-66=84
$$

(v) Let M be the set of people buying milk. Since 56 of the 150 people bought neither bread nor milk, 94 bought either bread or milk, that is $|M \cup B|=94$. We are also given $|M \cap B|=31$. So from (i) with $A=M$, we have
$94=|M \cup B|=|M|+|B|-|M \cap B|=|M|+66-31=|M|+35$, that is, $|M|=94-35=59$, so 59 people bought milk.
(vi) The set of people who bought milk and not bread is $M \backslash B$, and

$$
|M \backslash B|=|M|-|M \cap B|=59-31=28 .
$$

So 28 people bought milk and not bread.
(vii) In (i) we take $B \cap M$ and $B \cap O$ to replace A and B, because $B \cap(M \cup O)=(B \cap M) \cup(B \cap O)$. Also $(B \cap M) \cap(B \cap O)=B \cap M \cap O$. So this gives

$$
|B \cap(M \cup O)|=|B \cap M|+|B \cap O|-|B \cap M \cap O| .
$$

(viii) Given that $|B \cap O|=42$, and $|B \cap M|=31$, and $|B \cap(M \cup O)|=$ 44 from (ii), we have, from (vii)

$$
44=42+31-|B \cap M \cap O|
$$

and hence $|B \cap M \cap O|=73-44=29$, that is, 29 people bought bread and milk and something else.

Theory from lectures 4 marks

Similar to homework exercises. 1 mark

2 marks
4 marks

4 marks

15 marks in total
13. A set $A \subset \mathbb{Q}$ is a Dedekind cut if
a) A is nonempty, and bounded above;
b) $x \in A \wedge y \in \mathbb{Q} \wedge y<x \Rightarrow y \in A$;
c) A does not have a maximal element.
(i) $A=\{x \in \mathbb{Q}: x \leq 2 / 3\}$ has a maximal element $2 / 3$. So property c) is violated and A is not a Dedekind cut.
(ii) $1 \in A$ and $0 \notin A$ (for example). So property b) is violated and A is not a Dedekind cut.
(iii) If $f(x)=x^{3}-3 x+3$, then $f^{\prime}(x)=3 x^{2}-3$ has zeros at ± 1, and as $f^{\prime \prime}(x)=6 x$, we see that -1 is a local maximum and 1 is a local minimum, and f is strictly increasing on $(-\infty,-1]$ and on $[1, \infty)$, and strictly decreasing on $[-1,1]$. Since $f(1)=1>0$, we see that $f(x) \geq 1$ for all $x \geq-1$. So A is bounded above by -1 . But $f(-3)<0$, so $-3 \in A$ and A is nonempty. Since f is strictly increasing on $(-\infty,-1$], if $f(x)<0$ and $y<x$ then $f(y)<0$, that is, property b) holds. If $x \in A$ is a maximal element in A then $f(x)<0$. But then by continuity of f at x, there is a rational $\delta>0$ such that for any $y \in \mathbb{Q}$ with $x \leq y \leq x+\delta$, we have $f(y)<0$, that is $y \in A$, contradicting x being a maximal element, that is property c) holds for A. So A is a Dedekind cut.
(iv) Once again, if $f(x)=x^{3}-3 x+1$, then $f^{\prime}(x)=3 x^{2}-3$ has zeros at $\pm 1,-1$ is a local maximum, and f is strictly increasing on $(-\infty,-1$], with $f(-1)=3>0$. By the definition of A, the set is bounded above by -1 , and since $-2 \in A$, it is non-empty. As in (iii), property b) holds because f is strictly increasing on $(-\infty,-1$] and, again as in (iii), property c) holds because of continuity of f. So A is a Dedekind cut.

