Solutions to MATH105 exam January 2013 Section A

1 mark	1.a) 1.5 is an integer This is false
2 marks	b) If x is a real number and $x^2 \leq 0$, then $x = 0$ This is true, because if x is a non-zero real number, $x^2 > 0$
2 marks	c) For any integer n , 2 divides n or $n-1$. This is true.
2 marks	d) $0 \le x \le 1$ if and only if $0 \le x^2 \le 1$: false because $0 \le (-1)^2 \le 1$ (for example).
Standard home- work exercises 7 marks in to- tal. No reasons required.	
2 marks	2a) $x^2 < 9 \Leftrightarrow -3 < x < 3$. So $\{x : x^2 < 9\} = (-3, 3)$.
4 marks	b) For $\frac{x}{x+2} > 3$ either both x and $x+2$ have to be > 0 or both < 0 . If they are both positive we must have, in addition, $x > 3x+6$, that is, $x < -3$, which is inconsistent with $x > 0$. If both are negative, we must have, in addition, $x < 3x+6$, that is, $x > -3$. So we must have $-3 < x < -2$, that is, $\left\{x \in \mathbb{R} : \frac{x}{x+2} > 3\right\} = (-3, -2).$
Standard home- work exercises. 6 marks in total.	
1 mark	3. Base case: When $n = 3$ both n^3 and 3^n are 3^3 , so $n^3 \le 3^n$ is true when $n = 3$
4 marks	Inductive step : Suppose that $n \ge 3$ and $n^3 \le 3^n$. Then
	$(n+1)^3 = n^3 \times (1+\frac{1}{n})^3 \le n^3 \times (\frac{4}{3})^3 = \frac{64}{27}n^3 \le 2n^3 \le 2 \times 3^n < 3^{n+1}.$
1 mark Standard home- work exercise. 6 marks in total.	So if $n \ge 3$, $n^3 \le 3^n \Rightarrow (n+1)^3 \le 3^{n+1}$. So, by induction, $n^3 \le 3^n$ for all integers $n \ge 3$

6 marks	4. $1989 = 9 \times 221 = 3^2 \times 13 \times 17$. So the divisors of 1989 are $3^{k_1} \times 13^{k_2} \times 17^{k_3}$ for integers $0 \le k_1 \le 2, 0 \le k_2 \le 1, 0 \le k_3 \le 2$,
	that is, 1, 3, 9, 13, 39, 117, 17, 51 153, 221, 663, 1989.
Standard home-	
work exercises.	
6 marks in total.	
2 marks	5. $n \in \mathbb{Z}$ is even $\Leftrightarrow n = 2k$ for some $k \in \mathbb{Z} \Rightarrow n^2 = 4k^2 = 2(2k)^2$ $\Rightarrow n^2$ is even.
3 marks	$n \text{ not even} \Rightarrow n-1 \text{ is even} \Rightarrow n-1 = 2k \text{ for some } k \in \mathbb{Z} \Rightarrow$ $n = 2k+1 \Rightarrow n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 \Rightarrow$ $n^2 \text{ is not even.}$
Bookwork.	
5 marks in total.	
	6. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
4 marks	
	As a result of this:
1 mark	(i) the g.c.d. d is 7;
1 mark	(ii) from the first row of the last matrix, $m_1 = 89$ and $n_1 = 33$;
1 mark	(iii) from the second row of either of the last two matrices $a = -10$ and $b = 27$;
2 marks	(iv) The l.c.m. is $623 \times 33 = 20559$.
Standard home-	
work exercise.	
9 marks in total	

2 marks	7 $f: X \to Y$ is injective if $\forall x_1, x_2 \in X, f(x_1) = f(x_2) \Leftrightarrow x_1 = x_2.$
2 marks	The image of f , $\text{Im}(f)$ is $\{f(x) : x \in X\}$. f is a bijection if f is injective and $\text{Im}(f) = V$ that is f is also surjective
1 marks	Injective and $\operatorname{Im}(f) = f$, that is, f is also surjective $y = \frac{x+1}{2} \Leftrightarrow x+1 = y(x+2) \Leftrightarrow x(1-y) = 2y-1 \Leftrightarrow x = \frac{2y-1}{2}$
4 marks	$y = \frac{y}{x+2} \Leftrightarrow x+1 = y(x+2) \Leftrightarrow x(1-y) = 2y-1 \Leftrightarrow x = \frac{1}{1-y}.$
	It follows that f is injective. Also, we see that $x > 0 \Leftrightarrow \frac{1}{2} < y < 1$.
Standard theory	So $Im(f) = (\frac{1}{2}, 1)$.
followed by stan	
dard homework	
exercise	
8 marks in total.	
~	
Standard theory.	8. (i)
2 marks	$\frac{x+2}{x+3} = 10 \Leftrightarrow x+2 = 10x+30 \Leftrightarrow x = -\frac{28}{9}.$
	So x is rational.
3 marks	(ii)
	$\frac{2}{y+2} = 1 - \frac{1}{y+1} \Leftrightarrow 2(y+1) = (y+1)(y+2) - (y+2) \Leftrightarrow 2y+2 = y^2 + 3y+2 - y^2 + 3y + 2 = y^2 + 3y + 3$
	So y is the positive square root of 2, which is not rational.
Standard home-	
work exercises.	
5 marks	
1 mark	9(i) countable;
1 mark	(ii) uncountable;
1 mark	(iii) countable.
Standard home-	
work exercises.	
3 marks	

Section B		
Theory from lec- tures 3 marks	10. \sim is reflexive if $x \sim x \forall x \in X$	
	\sim 1S symmetric If	
	$x \sim y \Rightarrow y \sim x \ \forall x, y \in X.$	
	\sim is <i>transitive</i> if	
	$(x \sim y \land y \sim z) \Rightarrow x \sim z \forall x, y, \in X.$	
Theory from lec- tures. 2 marks	The equivalence class $[x]$ of x is the set $\{y \in X : y \sim x\}$.	
Standard home- work exercise 3 marks	(i) $n - n = 0 = 3 \times 0$. So $n \sim n \ \forall n \in \mathbb{Z}$ and \sim is reflexive. If $m \sim n$ then $m - n = 3r$ for $r \in \mathbb{Z}$, and hence $n - m = 3(-r)$ for $-r \in \mathbb{Z}$ and $n \sim m$. So \sim is symmetric If $m \sim n$ and $n \sim p$, then $m - n = 3r$ and $n - p = 3s$ for some $r, s \in \mathbb{Z}$, and hence $m - p = m - n + (n - p) = 3(r + s)$. So \sim is transitive and \sim is an equivalence relation.	
Standard home- work exercise. 1 mark	(ii) For any $n \in \mathbb{Z}$, $n - n = 0 \neq 3k + 1$ for any $k \in \mathbb{Z}$. So \sim is not reflexive and is not an equivalence relation.	
Harder exercise, not previously set.	(iii) $\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \sim \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$ because $c_1 = c_1$. So ~ is reflexive. Since $c_1 = c_2 \Leftrightarrow c_2 = c_1$, we have	
4 marks	$\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \sim \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \Leftrightarrow \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \sim \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$	
	and \sim is symmetric. Since $c_1 = c_2 \land c_2 = c_3 \Rightarrow c_1 = c_3$, we have:	
	$ \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \sim \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \wedge \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \sim \begin{pmatrix} a_3 & b_3 \\ c_3 & d_3 \end{pmatrix} \Rightarrow \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \sim \begin{pmatrix} a_3 & b_3 \\ c_3 & d_3 \end{pmatrix}, $	
	and \sim is transitive.	
Harder exercise, not previously	The equivalence class of $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ is	
set. 2 marks	$\left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, b, d \in \mathbb{R} \right\}$	
15 marks in to- tal.		

| 11(i) Base case: $1 = 1 \times (1+1)/2$. So the formula holds for n = 1Standard homework exercise $1~{\rm mark}$

4 marks

 $1 \mathrm{mark}$

Unseen:

lectures

 $1 \mathrm{mark}$

tion. 1 mark

4 marks
4 marks
Inductive step: Suppose that for some
$$n \in \mathbb{Z}_+$$
 we have

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}. \text{ Then}$$

$$\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + n + 1 = \frac{n(n+1)}{2} + n + 1 = (n+1)\left(\frac{n}{2}+1\right)$$

$$= \frac{(n+1)(n+2)}{2} = \frac{(n+1)(n+1+1)}{2}$$
So

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \Rightarrow \sum_{k=1}^{n+1} k = \frac{(n+1)(n+1+1)}{2}$$
So by induction $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ holds for all $n \in \mathbb{Z}_+.$
(ii) Base case: 0 is divisible by 3. So the statement is true for $n = 0$.
How and odd integers proved in
lectures as an example of induction.
1 mark
4 marks
Inductive step: Suppose that exactly one of $n, n-1$ and $n+1$ is
divisible by 3. Since $n+2 = (n-1)+3$ is divisible by 3 if and only
if $n-1$ is, exactly one of $n, n-1$ and $n+1$ is divisible by 3 if and
only if exactly one of $n = (n+1) - 1$ and $n+2 = (n+1)+1$ and
 $n+1$ is divisible by 3. So if the statement is true for $n,$ it is true
for $n+1$.
So by induction, for all $n \in \mathbb{N}$, exactly one of $n, n-1$ and $n+1$ is
divisible by 3.
If $n \in \mathbb{N}$ is divisible by 3 then $n = 3k$ for some $k \in \mathbb{Z}_+ \subset N$ and
 $n = 3k - 1$ for some $k \in \mathbb{Z}_+$. If $n - 1$ is divisible by 3 and $n \in \mathbb{N}$
then $n > 0$ and $n - 1 = 3k$ for some $k \in \mathbb{N}$, and $n = 3k + 1$ for
some $k \in \mathbb{N}$.

Theory from lec- tures 2 marks	12(i) The inclusion/exclusion principle to two finite sets A and B is that $ A \cup B = A + B - A \cap B .$
Standard home- work exercises. 2 marks	(ii) If B is the set of people who bought bread and A is the set of people who bought another item, then $ B = 66$, $ A = 128 $ and $ A \cup B = 150$. The set of people who bought both bread and another item is $A \cap B$, and from (i) we have
	$ A \cap B = A + B - A \cup B = 128 + 66 - 150 = 44.$
2 marks	(iii) The set of people who bought only bread is $B \setminus A$. we have
	$ B \setminus A = B - B \cap A = 66 - 44 = 22.$
1 mark	(iv) The set of people not buying bread is $A \setminus B = (A \cup B) \setminus B$, so we have
	$ A \setminus B = A \cup B - B = 150 - 66 = 84.$
2 marks	(v) Let M be the set of people buying milk. Since 56 of the 150 people bought neither bread nor milk, 94 bought either bread or milk, that is $ M \cup B = 94$. We are also given $ M \cap B = 31$. So from (i) with $A = M$, we have
	$94 = M \cup B = M + B - M \cap B = M + 66 - 31 = M + 35,$
2 marks	that is, $ M = 94 - 35 = 59$, so 59 people bought milk. (vi) The set of people who bought milk and not bread is $M \setminus B$, and
	$ M \setminus B = M - M \cap B = 59 - 31 = 28.$
2 marks	So 28 people bought milk and not bread. (vii) In (i) we take $B \cap M$ and $B \cap O$ to replace A and B, because $B \cap (M \cup O) = (B \cap M) \cup (B \cap O)$. Also $(B \cap M) \cap (B \cap O) = B \cap M \cap O$. So this gives
	$ B \cap (M \cup O) = B \cap M + B \cap O - B \cap M \cap O .$
2 marks	(viii) Given that $ B \cap O = 42$, and $ B \cap M = 31$, and $ B \cap (M \cup O) = 44$ from (ii), we have, from (vii)
	$44 = 42 + 31 - B \cap M \cap O $
15 marles : +-	and hence $ B \cap M \cap O = 73 - 44 = 29$, that is, 29 people bought bread and milk and something else.
tal.	

Theory from lec-	13. A set $A \subset \mathbb{Q}$ is a <i>Dedekind cut</i> if
tures 4 marks	a) A is nonempty, and bounded above;
	b) $x \in A \land y \in \mathbb{Q} \land y < x \Rightarrow y \in A;$
	c) A does not have a maximal element.
Similar to home- work exercises.	
1 mark	(i) $A = \{x \in \mathbb{Q} : x \le 2/3\}$ has a maximal element 2/3. So property c) is violated and A is not a Dedekind cut.
2 marks	(ii) $1 \in A$ and $0 \notin A$ (for example). So property b) is violated and A is not a Dedekind cut
4 marks	(iii) If $f(x) = x^3 - 3x + 3$, then $f'(x) = 3x^2 - 3$ has zeros at ± 1 , and as $f''(x) = 6x$, we see that -1 is a local maximum and 1 is a local minimum, and f is strictly increasing on $(-\infty, -1]$ and on $[1, \infty)$, and strictly decreasing on $[-1, 1]$. Since $f(1) = 1 > 0$, we see that $f(x) \ge 1$ for all $x \ge -1$. So A is bounded above by -1 . But $f(-3) < 0$, so $-3 \in A$ and A is nonempty. Since f is strictly increasing on $(-\infty, -1]$, if $f(x) < 0$ and $y < x$ then $f(y) < 0$, that is, property b) holds. If $x \in A$ is a maximal element in A then $f(x) < 0$. But then by continuity of f at x , there is a rational $\delta > 0$ such that for any $y \in \mathbb{Q}$ with $x \le y \le x + \delta$, we have $f(y) < 0$, that is $y \in A$, contradicting x being a maximal element, that is property c) holds for A . So A is a Dedekind cut.
4 marks	(iv) Once again, if $f(x) = x^3 - 3x + 1$, then $f'(x) = 3x^2 - 3$ has zeros at ± 1 , -1 is a local maximum, and f is strictly increasing on $(-\infty, -1]$, with $f(-1) = 3 > 0$. By the definition of A , the set is bounded above by -1 , and since $-2 \in A$, it is non-empty. As in (iii), property b) holds because f is strictly increasing on $(-\infty, -1]$ and, again as in (iii), property c) holds because of continuity of f . So A is a Dedekind cut.
15 marks in total	