
Solutions to MATH105 exam January 2013

Section A

1 mark 1.a) 1.5 is an integer
This is false.

2 marks b) If x is a real number and x2 ≤ 0, then x = 0
This is true, because if x is a non-zero real number, x2 > 0.

2 marks c) For any integer n, 2 divides n or n− 1.
This is true.

2 marks d) 0 ≤ x ≤ 1 if and only if 0 ≤ x2 ≤ 1: false because 0 ≤ (−1)2 ≤ 1
(for example).

Standard home-
work exercises
7 marks in to-
tal. No reasons
required.

2 marks 2a)x2 < 9⇔ −3 < x < 3. So {x : x2 < 9} = (−3, 3).

4 marks b) For
x

x+ 2
> 3 either both x and x+2 have to be > 0 or both < 0.

If they are both positive we must have, in addition, x > 3x+6, that
is, x < −3, which is inconsistent with x > 0. If both are negative,
we must have, in addition, x < 3x+ 6, that is, x > −3. So we must
have −3 < x < −2, that is,{

x ∈ R :
x

x+ 2
> 3

}
= (−3,−2).

Standard home-
work exercises.
6 marks in total.

1 mark 3. Base case: When n = 3 both n3 and 3n are 33, so n3 ≤ 3n is
true when n = 3

4 marks Inductive step: Suppose that n ≥ 3 and n3 ≤ 3n. Then

(n+1)3 = n3×(1+
1

n
)3 ≤ n3×(

4

3
)3 =

64

27
n3 ≤ 2n3 ≤ 2×3n < 3n+1.

So if n ≥ 3, n3 ≤ 3n ⇒ (n+ 1)3 ≤ 3n+1 .
1 mark So, by induction, n3 ≤ 3n for all integers n ≥ 3
Standard home-
work exercise.
6 marks in total.
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6 marks 4. 1989 = 9 × 221 = 32 × 13 × 17. So the divisors of 1989 are
3k1 × 13k2 × 17k3 for integers 0 ≤ k1 ≤ 2, 0 ≤ k2 ≤ 1, 0 ≤ k3 ≤ 2,
that is, 1, 3, 9, 13, 39, 117, 17, 51 153, 221, 663, 1989.

Standard home-
work exercises.
6 marks in total.
2 marks 5. n ∈ Z is even ⇔ n = 2k for some k ∈ Z ⇒ n2 = 4k2 = 2(2k)2

⇒ n2 is even.
3 marks n not even ⇒ n − 1 is even ⇒ n − 1 = 2k for some k ∈ Z ⇒

n = 2k + 1 ⇒ n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 ⇒
n2 is not even.

Bookwork.
5 marks in total.

6.

1 0
0 1

∣∣∣623
231

R1 − 2R2

→ 1 −2
0 1

∣∣∣161
231

→
R2 −R1

1 −2
−1 3

∣∣∣161
70

R1 − 2R2

→ 3 −8
−1 3

∣∣∣21
70

→
R2 − 3R1

3 −8
−10 27

∣∣∣21
7

R1 − 3R2

→ 33 −89
−10 27

∣∣∣0
7

4 marks

As a result of this:
1 mark (i) the g.c.d. d is 7;
1 mark (ii) from the first row of the last matrix, m1 = 89 and n1 = 33;
1 mark (iii) from the second row of either of the last two matrices a = −10

and b = 27;
2 marks (iv) The l.c.m. is 623× 33 = 20559.
Standard home-
work exercise.
9 marks in total
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2 marks 7 f : X → Y is injective if ∀x1, x2 ∈ X, f(x1) = f(x2)⇔ x1 = x2.
2 marks The image of f , Im(f) is {f(x) : x ∈ X}. f is a bijection if f is

injective and Im(f) = Y , that is, f is also surjective

4 marks y =
x+ 1

x+ 2
⇔ x+1 = y(x+2) ⇔ x(1−y) = 2y−1⇔ x =

2y − 1

1− y
.

It follows that f is injective. Also, we see that x > 0 ⇔ 1
2
< y < 1.

So Im(f) = (1
2
, 1).

Standard theory
followed by stan-
dard homework
exercise.
8 marks in total.

Standard theory.
2 marks

8. (i)
x+ 2

x+ 3
= 10 ⇔ x+ 2 = 10x+ 30⇔ x = −28

9
.

So x is rational.
3 marks (ii)

2

y + 2
= 1− 1

y + 1
⇔ 2(y+1) = (y+1)(y+2)−(y+2)⇔ 2y+2 = y2+3y+2−y−2⇔ 2 = y2.

So y is the positive square root of 2, which is not rational.
Standard home-
work exercises.
5 marks
1 mark 9(i) countable;
1 mark (ii) uncountable;
1 mark (iii) countable.
Standard home-
work exercises.
3 marks

3



Section B

Theory from lec-
tures
3 marks

10. ∼ is reflexive if
x ∼ x∀x ∈ X

∼ is symmetric if

x ∼ y ⇒ y ∼ x ∀ x, y ∈ X.

∼ is transitive if

(x ∼ y ∧ y ∼ z) ⇒ x ∼ z ∀ x, y, ∈ X.

Theory from lec-
tures.
2 marks

The equivalence class [x] of x is the set {y ∈ X : y ∼ x}.

Standard home-
work exercise
3 marks

(i) n − n = 0 = 3 × 0. So n ∼ n ∀n ∈ Z and ∼ is reflexive. If
m ∼ n then m − n = 3r for r ∈ Z, and hence n −m = 3(−r) for
−r ∈ Z and n ∼ m. So ∼ is symmetric If m ∼ n and n ∼ p,
then m − n = 3r and n − p = 3s for some r, s ∈ Z, and hence
m− p = m− n+ (n− p) = 3(r+ s). So ∼ is transitive and ∼ is an
equivalence relation.

Standard home-
work exercise.
1 mark

(ii) For any n ∈ Z, n− n = 0 6= 3k + 1 for any k ∈ Z. So ∼ is not
reflexive and is not an equivalence relation.

Harder exercise,
not previously
set.
4 marks

(iii)

(
a1 b1
c1 d1

)
∼
(
a1 b1
c1 d1

)
because c1 = c1. So ∼ is reflexive.

Since c1 = c2 ⇔ c2 = c1, we have(
a1 b1
c1 d1

)
∼
(
a2 b2
c2 d2

)
⇔

(
a2 b2
c2 d2

)
∼
(
a1 b1
c1 d1

)
and ∼ is symmetric.
Since c1 = c2 ∧ c2 = c3 ⇒ c1 = c3, we have:(
a1 b1
c1 d1

)
∼
(
a2 b2
c2 d2

)
∧
(
a2 b2
c2 d2

)
∼
(
a3 b3
c3 d3

)
⇒

(
a1 b1
c1 d1

)
∼
(
a3 b3
c3 d3

)
,

and ∼ is transitive.

Harder exercise,
not previously
set.
2 marks

The equivalence class of

(
0 0
0 0

)
is

{(
a b
0 d

)
: a, b, d ∈ R

}

15 marks in to-
tal.
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Standard home-
work exercise
1 mark

11(i) Base case: 1 = 1× (1 + 1)/2. So the formula holds for n = 1

4 marks Inductive step: Suppose that for some n ∈ Z+ we have
n∑

k=1

k =
n(n+ 1)

2
. Then

n+1∑
k=1

k =
n∑

k=1

k + n+ 1 =
n(n+ 1)

2
+ n+ 1 = (n+ 1)

(n
2

+ 1
)

=
(n+ 1)(n+ 2)

2
=

(n+ 1)(n+ 1 + 1)

2

So
n∑

k=1

k =
n(n+ 1)

2
⇒

n+1∑
k=1

k =
(n+ 1)(n+ 1 + 1)

2

1 mark So by induction
n∑

k=1

k =
n(n+ 1)

2
holds for all n ∈ Z+.

Unseen: corre-
sponding case of
even and odd in-
tegers proved in
lectures as an ex-
ample of induc-
tion.
1 mark

(ii) Base case: 0 is divisible by 3. So the statement is true for n = 0.

4 marks Inductive step: Suppose that exactly one of n, n − 1 and n + 1 is
divisible by 3. Since n+ 2 = (n− 1) + 3 is divisible by 3 if and only
if n− 1 is, exactly one of n, n− 1 and n+ 1 is divisible by 3 if and
only if exactly one of n = (n+ 1)− 1 and n+ 2 = (n+ 1) + 1 and
n + 1 is divisible by 3. So if the statement is true for n, it is true
for n+ 1.

1 mark So by induction, for all n ∈ N, exactly one of n, n− 1 and n+ 1 is
divisible by 3.

3 marks If n ∈ N is divisible by 3 then n = 3k for some k ∈ N. If n ∈ N and
n + 1 is divisible by 3 then n + 1 = 3k for some k ∈ Z+ ⊂ N and
n = 3k − 1 for some k ∈ Z+. If n − 1 is divisible by 3 and n ∈ N
then n > 0 and n − 1 = 3k for some k ∈ N , and n = 3k + 1 for
some k ∈ N.

15 marks in total
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Theory from lec-
tures
2 marks

12(i) The inclusion/exclusion principle to two finite sets A and B
is that

|A ∪B| = |A|+ |B| − |A ∩B|.

Standard home-
work exercises.
2 marks

(ii) If B is the set of people who bought bread and A is the set of
people who bought another item, then |B| = 66, |A| = 128| and
|A ∪ B| = 150. The set of people who bought both bread and
another item is A ∩B, and from (i) we have

|A ∩B| = |A|+ |B| − |A ∪B| = 128 + 66− 150 = 44.

2 marks (iii) The set of people who bought only bread is B \ A. we have

|B \ A| = |B| − |B ∩ A| = 66− 44 = 22.

1 mark (iv) The set of people not buying bread is A \B = (A ∪B) \B, so
we have

|A \B| = |A ∪B| − |B| = 150− 66 = 84.

2 marks (v) Let M be the set of people buying milk. Since 56 of the 150
people bought neither bread nor milk, 94 bought either bread or
milk, that is |M ∪ B| = 94. We are also given |M ∩ B| = 31. So
from (i) with A = M , we have

94 = |M ∪B| = |M |+ |B| − |M ∩B| = |M |+ 66− 31 = |M |+ 35,

that is, |M | = 94− 35 = 59, so 59 people bought milk.
2 marks (vi) The set of people who bought milk and not bread is M \ B,

and
|M \B| = |M | − |M ∩B| = 59− 31 = 28.

So 28 people bought milk and not bread.
2 marks (vii) In (i) we take B ∩M and B ∩O to replace A and B, because

B∩(M∪O) = (B∩M)∪(B∩O). Also (B∩M)∩(B∩O) = B∩M∩O.
So this gives

|B ∩ (M ∪O)| = |B ∩M |+ |B ∩O| − |B ∩M ∩O|.

2 marks (viii) Given that |B∩O| = 42, and |B∩M | = 31, and |B∩(M∪O)| =
44 from (ii), we have, from (vii)

44 = 42 + 31− |B ∩M ∩O|

and hence |B ∩M ∩ O| = 73− 44 = 29, that is, 29 people bought
bread and milk and something else.

15 marks in to-
tal.
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Theory from lec-
tures
4 marks

13. A set A ⊂ Q is a Dedekind cut if

a) A is nonempty, and bounded above;

b) x ∈ A ∧ y ∈ Q ∧ y < x⇒ y ∈ A;

c) A does not have a maximal element.

Similar to home-
work exercises.
1 mark (i) A = {x ∈ Q : x ≤ 2/3} has a maximal element 2/3. So property

c) is violated and A is not a Dedekind cut.
2 marks (ii) 1 ∈ A and 0 /∈ A (for example). So property b) is violated and

A is not a Dedekind cut.
4 marks (iii) If f(x) = x3 − 3x + 3, then f ′(x) = 3x2 − 3 has zeros at ±1,

and as f ′′(x) = 6x, we see that −1 is a local maximum and 1 is
a local minimum, and f is strictly increasing on (−∞,−1] and on
[1,∞), and strictly decreasing on [−1, 1]. Since f(1) = 1 > 0, we
see that f(x) ≥ 1 for all x ≥ −1. So A is bounded above by −1.
But f(−3) < 0, so −3 ∈ A and A is nonempty. Since f is strictly
increasing on (−∞,−1], if f(x) < 0 and y < x then f(y) < 0,
that is, property b) holds. If x ∈ A is a maximal element in A then
f(x) < 0. But then by continuity of f at x, there is a rational δ > 0
such that for any y ∈ Q with x ≤ y ≤ x+δ, we have f(y) < 0, that
is y ∈ A, contradicting x being a maximal element, that is property
c) holds for A. So A is a Dedekind cut.

4 marks (iv) Once again, if f(x) = x3 − 3x + 1, then f ′(x) = 3x2 − 3 has
zeros at ±1, −1 is a local maximum, and f is strictly increasing on
(−∞,−1], with f(−1) = 3 > 0. By the definition of A, the set is
bounded above by −1, and since −2 ∈ A, it is non-empty. As in
(iii), property b) holds because f is strictly increasing on (−∞,−1]
and, again as in (iii), property c) holds because of continuity of f .
So A is a Dedekind cut.

15 marks in total
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