Solutions to MATH105 exam January 2012 Section A

3 marks 3 marks Standard home- work exercises 6 marks in total	1.a) For any real number x , $x^2 + 2x + 1 \ge 0$. This is true because $x^2 + 2x + 1 = (x+1)^2$, and the square of a real number is always greater than or equal to 0. b) There exists an integer n such that $n \le p$ for all integers p . This is clearly false, because whatever n is, if $p = n - 1$ then $n > p$.
2 marks 2 marks Standard home- work exercises 4 marks in total	2a) $x \ge 0 \land x < 2$. b) $\exists x \in (0, 1)$ such that $x \le \sin x$.
2 marks	3a) $-4 < -3 < -1$ and $6 < 7 < 8$. So $[-3,7] \cap (-1,8) \cap [-4,6] = (-1,6]$.
2 marks	b) $([-4,1]\cup(3,8])\cap[2,3] = ([-4,1]\cap[2,3])\cup((3,8]\cap[2,3]) = \emptyset \cup \emptyset =$
2 marks	Ø. c) $[-5,1] \cap (2,6) = \emptyset = (3,7) \cap [-3,0]$. So
	$([-5,1]\cup(3,7))\cap([-3,0]\cup(2,6)) = [-5,1]\cap[-3,0])\cup((3,7)\cap(2,6))$
	$= [-3, 0] \cup (3, 6).$
Standard home- work exercises 6 marks in total	
4 marks	4a) $x^2 + x > 2 \iff x^2 + x - 2 > 0 \iff (x+2)(x-1) > 0$
	$\Leftrightarrow (x+2 > 0 \land x-1 > 0) \lor (x+2 < 0 \land x-1 < 0) \Leftrightarrow x > 1 \lor x < -2.$
2 marks	b) $x^2 + x + 2 = (x + \frac{1}{2})^2 + \frac{7}{4} > 0$ for all $x \in \mathbb{R}$. So there are no solutions, that is, the set of solutions is empty.
Standard home- work exercises. 6 marks in total	

1 marks	5. To start the induction, $2 - 3^0 = 2 - 1 = 1$ So $x_n = 2 - 3^n$ holds for $n = 0$. Now suppose inductively that $x_n = 2 - 3^n$. Then
4 marks	$x_{n+1} = 3x_n - 4 = 3(2 - 3^n) - 4 = 6 - 3^{n+1} - 4 = 2 - 3^{n+1}.$
	So true for n implies true for $n + 1$ and $x_n = 2 - 3^n$ is true for all
Standard home- work exercise 5 marks in total	$n \in \mathbb{N}.$
	6.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccc} R_1 - 17R_2 & & 35 & -52 \\ \to & & -2 & 3 \end{array} \begin{vmatrix} 0 \\ 11 \end{vmatrix} $
4 marks	
1 mark 1 mark 1 mark 2 marks Standard home- work exercise	As a result of this: (i) the g.c.d. d is 11; (ii) from the first row of the last matrix, $r = 52$ and $s = 35$; (iii) from the second row of either of the last two matrices $m = -2$ and $n = 3$; (iv) The l.c.m. is $572 \times 35 = 20020$.
9 marks in total	
2 marks 3 marks 3 marks	7 $f: X \to Y$ is injective if $\forall x_1, x_2 \in X, f(x_1) = f(x_2 \Leftrightarrow x_1 = x_2)$. The image of f , $\operatorname{Im}(f)$ is $\{f(x) : x \in X\}$. f is a bijection if f is injective and $\operatorname{Im}(f) = Y$, that is, f is also surjective a) Since f is strictly decreasing on $(0, \infty)$, it is injective. For all $x \in (0, \infty)$, we have $x^{-2} > 0$, and $x^{-2} = y \Leftrightarrow x = 1/\sqrt{y}$. So
2 marks	Im $(f) = (0, \infty)$. b) f is not injective, since $\sin^2(-x) = (-\sin x)^2 = \sin^2 x$. For all x we have $1 \le \sin x \le 1$ and $\sin([0, \pi/2]) = [0, 1]$. So Im $(f) = [0, 1]$
Standard theory followed by stan- dard homework exercises 10 marks in total	we have $-1 \le \sin x \le 1$, and $\sin([0, \pi/2]) = [0, 1]$. So $\operatorname{Im}(f) = [0, 1]$.

standard theory	$8. A_1 \cup A_2 = A_1 + A_2 - A_1 \cap A_2 $
2 marks	
standard home-	(i) If A_1 and A_2 are the sets of retailers selling Series 1 and 2
work exercise	respectively, then $ A_1 \cup A_2 = 10$ and $ A_1 = 9$ and $ A_2 = 8$, then
3 marks	the inclusion/exclusion principle gives $ A_1 \cap A_2 = 9 + 8 - 10 = 7$
	Then the number of retailers selling only Series 1 is $ A_1 - A_1 \cap A_2 =$
	$9-7=2$ and the number selling only Series 2 is $ A_2 - A_1 \cap A_2 =$
	8 - 7 = 1
unseen	(ii) Let A_3 denote the set of retailers selling Series 3. Since this is
4 marks	included in the original set of 10 retailers, we have $A_3 \subset A_1 \cup A_2$
Part marks will	and every retailer which sells Series 3 also sells at least one of Serie
be given for an	1 and 2. So if 6 of the retailers sell all three, there is one retaile
answer which	who sells Series 3 and exactly one other of Series 1 and 2. There
recognises some	are 7 retailers who sell both Series 1 and Series 2, but only 6 o
possibilities	these sell Series 3. So there is one retailer who sells just Series 3
without giving	and Series 2, and one other who sells Series 3 and just one other
the general	So altogether 2 retailers sell exactly 2 of the 3 series.
solution.	
Standard home-	
work exercise	
9 marks in total	

Section	В
00001011	

Theory from lec- tures	9. ~ is reflexive if $x \sim x \forall x \in X$
3 marks	\sim is <i>symmetric</i> if
	$x \sim y \Rightarrow y \sim x \ \forall x, y \in X.$
	\sim is <i>transitive</i> if
	$(x \sim y \land y \sim z) \Rightarrow x \sim z \forall x, y, \in X.$
Standard home- work exercise 3 marks	(i) $n - n = 0 \in \mathbb{Z}$ is even. So $n \sim n \ \forall n \in \mathbb{Z}$ and \sim is reflexive If $m \sim n$ then $m - n = 2r$ for $r \in \mathbb{Z}$, and hence $n - m = 2(-r)$ is even and $n \sim m$. So \sim is symmetric If $m \sim n$ and $n \sim p$, then $m - n = 2r$ and $n - p = 2s$ for some $r, s \in \mathbb{Z}$, and hence $m - p = m - n + (n - p) = 2(r + s)$ is even. So \sim is transitive and \sim is an equivalence relation
Standard home- work exercise 2 marks	For any $m \in \mathbb{Z}$, either $m = 2p$ for some $p \in \mathbb{Z}$ or $m = 2q - 1$ for some $q \in \mathbb{Z}$ —but not both. So either $m \sim 0$ or $m \sim 1$ – but not both. So there are two equivalence classes, and 0 and 1 are representatives.
Standard home- work exercise 4 marks	(ii) $f(x) - f(x) = 0 = 0 + 0x$. So $f \sim f \forall f \in X$, and \sim is reflexive. Now suppose that $f(x) - g(x) = \alpha_0 + \alpha_1 x$ where α_0 and α_1 are even. Then $g(x) - f(x) = -\alpha_0 - \alpha_1 x - x^2 F(x)$ and $-\alpha_0$ and $-\alpha_1$ are even. So $f \sim g \Rightarrow g \sim f$ and \sim is symmetric. Now suppose also that $g(x) - h(x) = \beta_0 + \beta_1 x$ where β_0 and β_1 are even. Then
	$f(x) - h(x) = \alpha_0 + \beta_0 + (\alpha_1 + \beta_1)x$
	where $\alpha_0 + \beta_0$ and $\alpha_1 + \beta_1$ are even. So
	$f \sim g \wedge g \sim h \Rightarrow f \sim h$
Standard ex- ercise not previously set 3 marks	and ~ is transitive. So ~ is an equivalence relation. Representatives of the four equivalence classes are 0, 1, x, x + 1. because if $f(x) = c_0 + c_1 x$ for $c_0, c_1 \in \mathbb{Z}$ then $c_0 = 2d_0$ or $1 + 2d_0$ for $d_0 \in \mathbb{Z}$ – but not both – and $c_1 = 2d_1$ or $1 + 2d_1$ for $d_1 \in \mathbb{Z}$ – but not both – and hence exactly one of the following holds
	$f(x) \sim 0, f(x) \sim 1, f(x) \sim x, f(x) \sim 1 + x.$
15 marks in total	

15 marks in total

Standard (harder) homework exercise 4 marks 10(i) . Base case $1 = x_0 < 2$. So $1 \le x_n < 2$ is true for n = 0. Inductive step Now fix $n \in \mathbb{N}$ and suppose that $1 \le x_n < 2$. Then $4 \le 3 + x_n < 5$ and

$$1 < \frac{7}{5} < \frac{7}{3+x_n} \le \frac{7}{4} < 2.$$

So

$$1 = 3 - 2 \le x_{n+1} = 3 - \frac{7}{3 + x_n} < 3 - 1 = 2.$$

So $1 \le x_n < 2 \implies 1 < x_{n+1} < 2$. So by induction $1 \le x_n < 2$ holds for all $n \in \mathbb{N}$. (ii)

Calculation 2 marks

$$x_{n+2} - x_{n+1} = 3 - \frac{7}{3+x_{n+1}} - 3 + \frac{7}{3+x_n} = \frac{7(3+x_{n+1}-3-x_n)}{(3+x_{n+1})(3+x_n)}$$
$$= \frac{7(x_{n+1}-x_n)}{(3+x_n)(3+x_{n+1})}.$$

Some similarities with exercises set 4 marks The denominator of the expression on the right-hand side is > 0 by (i), because $x_n > 0$ and $x_{n+1} > 0$. So $x_n < x_{n+1} \Rightarrow x_{n+1} < x_{n+2}$. We have $x_0 < x_1 = \frac{5}{4}$. So the base case of $x_n < x_{n+1}$ for n = 0holds and the inductive step has just been proved. So by induction $x_n < x_{n+1}$ for all $n \in \mathbb{N}$ and x_n is an increasing sequence. (iii) *Base case*

Standard homework problem on induction. 5 marks

$$|x_1 - x_0| = \left|\frac{5}{4} - 1\right| = \frac{1}{4}.$$

So the required upper bound on $|x_{n+1} - x_n|$ holds for n = 0. Inductive step Now suppose that the required upper bound holds on $|x_{n+1} - x_n|$. Then we use the formula for $|x_{n+2} - x_{n+1}|$ at the start of (ii). We also use the bounds $x_n \ge 1$ and $x_{n+1} \ge 1$ to deduce

$$(3+x_n)(3+x_{n+1}) \ge 4 \times 4 = 16.$$

Then from (ii) we have

$$|x_{n+2} - x_{n+1}| = \frac{7|x_{n+1} - x_n|}{(3+x_n)(3+x_{n+1})} \le \frac{7}{16}|x_{n+1} - x_n|$$
$$\le \frac{7}{16} \cdot \left(\frac{7}{16}\right)^n \cdot \frac{1}{4} = \left(\frac{7}{16}\right)^{n+1} \cdot \frac{1}{4}.$$

So the upper bound for $|x_{n+1} - x_n|$ implies the upper bound for $|x_{n+2} - x_{n+1}|$, and by induction we have

$$|x_{n+1} - x_n| \le \frac{1}{4} \left(\frac{7}{16}\right)^n$$

for all $n \in \mathbb{N}$.

 $15\ {\rm marks}$ in total

Theory from lec-11. A set $A \subset Q$ is a Dedekind cut if tures (i) A is nonempty, and bounded above, 5 marks (ii) $x \in A \land y \in \mathbb{Q} \land y < x \Rightarrow y \in A$ (iii) A does not have a maximal element. Similar to homework exercises a) $A = \{x \in \mathbb{Q} : x \leq 6.5\}$ has a maximal element (6.5); So property 1 mark (iii) is violated and A is not a Dedekind cut. (b) $A = \{x \in \mathbb{Q} : 7 < x\}$ is not bounded above – because, for 1 mark example, A contains all integers ≥ 8 . So property (i) is violated and A is not a Dedekind cut. 3 marks c) $A = \left\{ x : (x - \frac{3}{2})^2 < \frac{5}{4} \right\} = \left\{ x : \frac{3}{2} - \frac{\sqrt{5}}{2} < x < \frac{3}{2} + \frac{\sqrt{5}}{2} \right\}.$ So $0 \notin A$ but $\frac{3}{2} \in A$ (for example). So property (ii) is violated, and A is not a Dedekind cut. Special case of We check the properties of 2A one by one. theory from lec-(i) $x \in 2A \land y < x \Leftrightarrow \frac{x}{2} \in A \land \frac{y}{2} < \frac{x}{2} \Rightarrow \frac{y}{2} \in A \Rightarrow y \in 2A.$ tures 4 marks (ii) $A \neq \emptyset \Rightarrow \exists x \in A \Rightarrow \exists 2x \in 2A \Rightarrow 2A \neq \emptyset$. (iii) $\exists M, x \leq M \forall x \in A \Rightarrow y \leq 2M \forall y \in A.$ So 2A is bounded above. $\exists b \in 2A, y \le b \forall y \in 2A \Rightarrow \frac{b}{2} \in A \land x \le \frac{b}{2} \forall x \in A$ So as A does not have a maximal element, 2A does not either. So 2A is a Dedekind cut. Theory from lec-By the second property of a Dedekind cut, if $x \in A$ then $y \in A$ for tures, but only all $y \in \mathbb{Q}$ with y < x and hence $z \in -A$ for all $z \in \mathbb{Q}$ with z > -x. So -A is not bounded above and is not a Dedekind cut. incidentally, \mathbf{SO} unseen. 1 mark 15 marks in total

6

Theory from lec- tures 4 marks	12. A is finite if either A is empty, or, for some $n \in \mathbb{Z}_+$, there is a bijection $f : \{k \in \mathbb{N} : k < n\} \to A$. For a fixed set A, there is at most one $n \in \mathbb{Z}_+$ for which such a bijection exists, and if there is such an n then A is said to be of cardinality n. The empty set is said to be of cardinality 0. A is countable if either A is finite or there is a bijection $f : \mathbb{N} \to A$.
Standard exam-	
ples	
2 marks	a) [0, 1] is uncountable, and $g: A \to B$ is injective, where $g(x) = \frac{x}{2}$
	for all $x \in [0, 1]$
1 mark	b) $[0, 1)$ is uncountable, and $h : B \to A$ is injective where $h(x) = x$ for all $x \in [0, 1)$.
Theory from lec-	
tures	
Standard exam-	
ples	
1 mark	c) \mathbb{Z} is countable.
1 mark	d) \mathbb{N}^2 is countable.
2 marks	The Schroder-Bernstein Theorem, says that if there exists an injec-
	tive map $g: A \to B$ and an injective map $h: B \to A$ then there is
	a bijection $k: A \to B$. A composition of bijections is a bijection,
	so if one of A and B is in bijection with \mathbb{N} , the other one is too.
Theory from lec-	The set $A_p = \{(m, n) \in \mathbb{N}^2 : m + n = p\}$ can be written as $\{(m, p - p)\}$
tures, but should	m : $0 \le p \le m$ }, for all $p \in \mathbb{N}$, and so has $p + 1$ elements, and is
be regarded as	therefore finite. Clearly we can write $\mathbb{N}^2 = \bigcup_{p=0}^{\infty} A_p$ and therefore
unseen. No	\mathbb{N}^2 is a countable union of finite sets.
memorising	
required or	
desired.	
4 marks	
15 marks in total	