Solutions to MATH105 exam January 2012

Section A

1 marks	5. To start the induction, $2-3^{0}=2-1=1$ So $x_{n}=2-3^{n}$ holds for $n=0$. Now suppose inductively that $x_{n}=2-3^{n}$. Then
4 marks	$x_{n+1}=3 x_{n}-4=3\left(2-3^{n}\right)-4=6-3^{n+1}-4=2-3^{n+1} .$ So true for n implies true for $n+1$ and $x_{n}=2-3^{n}$ is true for all $n \in \mathbb{N}$.
Standard home- work exercise 5 marks in total	
	6.
4 marks	
1 mark 1 mark 1 mark 2 marks Standard homework exercise 9 marks in total	As a result of this: (i) the g.c.d. d is 11 ; (ii) from the first row of the last matrix, $r=52$ and $s=35$; (iii) from the second row of either of the last two matrices $m=-2$ and $n=3$; (iv) The l.c.m. is $572 \times 35=20020$.
2 marks	$7 f: X \rightarrow Y$ is injective if $\forall x_{1}, x_{2} \in X, f\left(x_{1}\right)=f\left(x_{2} \Leftrightarrow x_{1}=x_{2}\right.$.
3 marks	The image of $f, \operatorname{Im}(f)$ is $\{f(x): x \in X\}$. f is a bijection if f is injective and $\operatorname{Im}(f)=Y$, that is, f is also surjective
3 marks	a) Since f is strictly decreasing on $(0, \infty)$, it is injective. For all $x \in(0, \infty)$, we have $x^{-2}>0$, and $x^{-2}=y \Leftrightarrow x=1 / \sqrt{y}$. So $\operatorname{Im}(f)=(0, \infty)$.
2 marks	b) f is not injective, since $\sin ^{2}(-x)=(-\sin x)^{2}=\sin ^{2} x$. For all x we have $-1 \leq \sin x \leq 1$, and $\sin ([0, \pi / 2])=[0,1]$. So $\operatorname{Im}(f)=[0,1]$.
Standard theory followed by standard homework exercises 10 marks in total	

standard theory 2 marks standard homework exercise 3 marks
unseen
4 marks
Part marks will be given for an answer which recognises some possibilities without giving the general solution.
Standard homework exercise 9 marks in total
8. $\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right|-\left|A_{1} \cap A_{2}\right|$
(i) If A_{1} and A_{2} are the sets of retailers selling Series 1 and 2 respectively, then $\left|A_{1} \cup A_{2}\right|=10$ and $\left|A_{1}\right|=9$ and $\left|A_{2}\right|=8$, then the inclusion/exclusion principle gives $\left|A_{1} \cap A_{2}\right|=9+8-10=7$. Then the number of retailers selling only Series 1 is $\left|A_{1}\right|-\left|A_{1} \cap A_{2}\right|=$ $9-7=2$ and the number selling only Series 2 is $\left|A_{2}\right|-\left|A_{1} \cap A_{2}\right|=$ $8-7=1$
(ii) Let A_{3} denote the set of retailers selling Series 3 . Since this is included in the original set of 10 retailers, we have $A_{3} \subset A_{1} \cup A_{2}$, and every retailer which sells Series 3 also sells at least one of Series 1 and 2 . So if 6 of the retailers sell all three, there is one retailer who sells Series 3 and exactly one other of Series 1 and 2. There are 7 retailers who sell both Series 1 and Series 2, but only 6 of these sell Series 3. So there is one retailer who sells just Series 1 and Series 2, and one other who sells Series 3 and just one other. So altogether 2 retailers sell exactly 2 of the 3 series.

Section B

Theory from lectures 3 marks

Standard homework exercise 3 marks

Standard homework exercise 2 marks

Standard homework exercise 4 marks

Standard exercise not previously set 3 marks
9. \sim is reflexive if

$$
x \sim x \forall x \in X
$$

\sim is symmetric if

$$
x \sim y \Rightarrow y \sim x \forall x, y \in X
$$

\sim is transitive if

$$
(x \sim y \wedge y \sim z) \Rightarrow x \sim z \forall x, y, \in X
$$

(i) $n-n=0 \in \mathbb{Z}$ is even. So $n \sim n \forall n \in \mathbb{Z}$ and \sim is reflexive If $m \sim n$ then $m-n=2 r$ for $r \in \mathbb{Z}$, and hence $n-m=2(-r)$ is even and $n \sim m$. So \sim is symmetric If $m \sim n$ and $n \sim p$, then $m-n=2 r$ and $n-p=2 s$ for some $r, s \in \mathbb{Z}$, and hence $m-p=m-n+(n-p)=2(r+s)$ is even. So \sim is transitive and \sim is an equivalence relation
For any $m \in \mathbb{Z}$, either $m=2 p$ for some $p \in \mathbb{Z}$ or $m=2 q-1$ for some $q \in \mathbb{Z}$-but not both. So either $m \sim 0$ or $m \sim 1$ - but not both. So there are two equivalence classes, and 0 and 1 are representatives.
(ii) $f(x)-f(x)=0=0+0 x$. So $f \sim f \forall f \in X$, and \sim is reflexive. Now suppose that $f(x)-g(x)=\alpha_{0}+\alpha_{1} x$ where α_{0} and α_{1} are even. Then $g(x)-f(x)=-\alpha_{0}-\alpha_{1} x-x^{2} F(x)$ and $-\alpha_{0}$ and $-\alpha_{1}$ are even. So $f \sim g \Rightarrow g \sim f$ and \sim is symmetric.
Now suppose also that $g(x)-h(x)=\beta_{0}+\beta_{1} x$ where β_{0} and β_{1} are even. Then

$$
f(x)-h(x)=\alpha_{0}+\beta_{0}+\left(\alpha_{1}+\beta_{1}\right) x
$$

where $\alpha_{0}+\beta_{0}$ and $\alpha_{1}+\beta_{1}$ are even. So

$$
f \sim g \wedge g \sim h \Rightarrow f \sim h
$$

and \sim is transitive.
So \sim is an equivalence relation.
Representatives of the four equivalence classes are

$$
0,1, x, x+1
$$

because if $f(x)=c_{0}+c_{1} x$ for $c_{0}, c_{1} \in \mathbb{Z}$ then $c_{0}=2 d_{0}$ or $1+2 d_{0}$ for $d_{0} \in \mathbb{Z}$ - but not both - and $c_{1}=2 d_{1}$ or $1+2 d_{1}$ for $d_{1} \in \mathbb{Z}$ but not both - and hence exactly one of the following holds

$$
f(x) \sim 0, \quad f(x) \sim 1, \quad f(x) \sim x, \quad f(x) \sim 1+x
$$

15 marks in total

Standard (harder) homework exercise 4 marks

Calculation

2 marks

Some

simi-
larities with exercises set 4 marks

Standard homework problem on induction. 5 marks

10(i). Base case $1=x_{0}<2$. So $1 \leq x_{n}<2$ is true for $n=0$.
Inductive step Now fix $n \in \mathbb{N}$ and suppose that $1 \leq x_{n}<2$. Then $4 \leq 3+x_{n}<5$ and

$$
1<\frac{7}{5}<\frac{7}{3+x_{n}} \leq \frac{7}{4}<2
$$

So

$$
1=3-2 \leq x_{n+1}=3-\frac{7}{3+x_{n}}<3-1=2 .
$$

So $1 \leq x_{n}<2 \Rightarrow 1<x_{n+1}<2$.
So by induction $1 \leq x_{n}<2$ holds for all $n \in \mathbb{N}$.
(ii)

$$
\begin{gathered}
x_{n+2}-x_{n+1}=3-\frac{7}{3+} x_{n+1}-3+\frac{7}{3+x_{n}}=\frac{7\left(3+x_{n+1}-3-x_{n}\right)}{\left(3+x_{n+1}\right)\left(3+x_{n}\right)} \\
=\frac{7\left(x_{n+1}-x_{n}\right)}{\left(3+x_{n}\right)\left(3+x_{n+1}\right)} .
\end{gathered}
$$

The denominator of the expression on the right-hand side is >0 by (i), because $x_{n}>0$ and $x_{n+1}>0$. So $x_{n}<x_{n+1} \Rightarrow x_{n+1}<x_{n+2}$. We have $x_{0}<x_{1}=\frac{5}{4}$. So the base case of $x_{n}<x_{n+1}$ for $n=0$ holds and the inductive step has just been proved. So by induction $x_{n}<x_{n+1}$ for all $n \in \mathbb{N}$ and x_{n} is an increasing sequence.
(iii) Base case

$$
\left|x_{1}-x_{0}\right|=\left|\frac{5}{4}-1\right|=\frac{1}{4}
$$

So the required upper bound on $\left|x_{n+1}-x_{n}\right|$ holds for $n=0$.
Inductive step Now suppose that the required upper bound holds on $\left|x_{n+1}-x_{n}\right|$. Then we use the formula for $\left|x_{n+2}-x_{n+1}\right|$ at the start of (ii). We also use the bounds $x_{n} \geq 1$ and $x_{n+1} \geq 1$ to deduce

$$
\left(3+x_{n}\right)\left(3+x_{n+1}\right) \geq 4 \times 4=16
$$

Then from (ii) we have

$$
\begin{gathered}
\left|x_{n+2}-x_{n+1}\right|=\frac{7\left|x_{n+1}-x_{n}\right|}{\left(3+x_{n}\right)\left(3+x_{n+1}\right)} \leq \frac{7}{16}\left|x_{n+1}-x_{n}\right| \\
\leq \frac{7}{16} \cdot\left(\frac{7}{16}\right)^{n} \cdot \frac{1}{4}=\left(\frac{7}{16}\right)^{n+1} \cdot \frac{1}{4} .
\end{gathered}
$$

So the upper bound for $\left|x_{n+1}-x_{n}\right|$ implies the upper bound for $\left|x_{n+2}-x_{n+1}\right|$, and by induction we have

$$
\left|x_{n+1}-x_{n}\right| \leq \frac{1}{4}\left(\frac{7}{16}\right)^{n}
$$

for all $n \in \mathbb{N}$.

Theory from lectures 5 marks
11. A set $A \subset Q$ is a Dedekind cut if
(i) A is nonempty, and bounded above,
(ii) $x \in A \wedge y \in \mathbb{Q} \wedge y<x \Rightarrow y \in A$
(iii) A does not have a maximal element.

Similar to homework exercises 1 mark

1 mark

3 marks

Special case of theory from lectures 4 marks

Theory from lectures, but only incidentally, so unseen.
1 mark
15 marks in total
a) $A=\{x \in \mathbb{Q}: x \leq 6.5\}$ has a maximal element (6.5) i So property (iii) is violated and A is not a Dedekind cut.
(b) $A=\{x \in \mathbb{Q}: 7<x\}$ is not bounded above - because, for example, A contains all integers ≥ 8. So property (i) is violated and A is not a Dedekind cut.
c)

$$
A=\left\{x:\left(x-\frac{3}{2}\right)^{2}<\frac{5}{4}\right\}=\left\{x: \frac{3}{2}-\frac{\sqrt{5}}{2}<x<\frac{3}{2}+\frac{\sqrt{5}}{2}\right\} .
$$

So $0 \notin A$ but $\frac{3}{2} \in A$ (for example). So property (ii) is violated, and A is not a Dedekind cut.

We check the properties of $2 A$ one by one.
(i) $x \in 2 A \wedge y<x \Leftrightarrow \frac{x}{2} \in A \wedge \frac{y}{2}<\frac{x}{2} \Rightarrow \frac{y}{2} \in A \Rightarrow y \in 2 A$.
(ii) $A \neq \emptyset \Rightarrow \exists x \in A \Rightarrow \exists 2 x \in 2 A \Rightarrow 2 A \neq \emptyset$.
(iii) $\exists M, x \leq M \forall x \in A \Rightarrow y \leq 2 M \forall y \in A$.

So $2 A$ is bounded above.

$$
\exists b \in 2 A, y \leq b \forall y \in 2 A \Rightarrow \frac{b}{2} \in A \wedge x \leq \frac{b}{2} \forall x \in A
$$

So as A does not have a maximal element, $2 A$ does not either. So 2A is a Dedekind cut.
By the second property of a Dedekind cut, if $x \in A$ then $y \in A$ for all $y \in \mathbb{Q}$ with $y<x$ and hence $z \in-A$ for all $z \in \mathbb{Q}$ with $z>-x$. So $-A$ is not bounded above and is not a Dedekind cut.

Theory from lectures
4 marks

Standard examples
2 marks

1 mark

Theory from lectures
Standard examples 1 mark
1 mark
2 marks

Theory from lectures, but should be regarded as unseen. No memorising required or desired.
4 marks 15 marks in total
12. A is finite if either A is empty, or, for some $n \in \mathbb{Z}_{+}$, there is a bijection $f:\{k \in \mathbb{N}: k<n\} \rightarrow A$. For a fixed set A, there is at most one $n \in \mathbb{Z}_{+}$for which such a bijection exists, and if there is such an n then A is said to be of cardinality n. The empty set is said to be of cardinality 0 .
A is countable if either A is finite or there is a bijection $f: \mathbb{N} \rightarrow A$.
a) $[0,1]$ is uncountable, and $g: A \rightarrow B$ is injective, where $g(x)=\frac{x}{2}$ for all $x \in[0,1]$
b) $[0,1)$ is uncountable, and $h: B \rightarrow A$ is injective where $h(x)=x$ for all $x \in[0,1)$.
c) \mathbb{Z} is countable.
d) \mathbb{N}^{2} is countable.

The Schroder-Bernstein Theorem, says that if there exists an injective map $g: A \rightarrow B$ and an injective map $h: B \rightarrow A$ then there is a bijection $k: A \rightarrow B$. A composition of bijections is a bijection, so if one of A and B is in bijection with \mathbb{N}, the other one is too.
The set $A_{p}=\left\{(m, n) \in \mathbb{N}^{2}: m+n=p\right\}$ can be written as $\{(m, p-$ $m): 0 \leq p \leq m\}$, for all $p \in \mathbb{N}$, and so has $p+1$ elements, and is therefore finite. Clearly we can write $\mathbb{N}^{2}=\cup_{p=0}^{\infty} A_{p}$ and therefore \mathbb{N}^{2} is a countable union of finite sets.

