Solutions to MATH105 exam January 2011 Section A

$3 \mathrm{marks}$	1.a) For a real number x , $x^2 + x - 2 = 0$ if and only if $x = 1$ or
	x = -2. This is true because $x^2 + x - 2 = (x+2)(x-1) = 0 \Leftrightarrow x+2 = 0$
3 marks	or $x - 1 = 0$. b) For a real number x, if x is greater than 0 and less than 3, then x is greater than 1 and less than 2. This is clearly false. For example if $x = 1$ then $1 > 0$ and $1 < 3$ but it is not true that $1 > 1$
Standard home- work exercises 6 marks in total	but it is not true that 1 > 1.
1 mark 3 marks Standard home- work exercises 4 marks in total	2a) $\exists x \in \mathbb{R}, x^2 + x + 1 \le 0$ b) $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x > y \land x^2 \le y^2$.
1 mark 1 mark 1 mark 1 mark 1 mark 1 mark Standard home- work exercises 6 marks in total	 3a) Yes, 3 ∈ π because π > 3 b) No 3 ∉ X because 3 > 2 and so 3 ∉ [1, 2] c) No 3 ∉ X. d) Yes e) No because 2 + 3i is not a real number f) No because π is not an integer – in fact not even rational.
1 mark	4a) $1 - 3x > 5 \Leftrightarrow 3x < -4 \Leftrightarrow x < -4/3.$
2 marks	b) If $1 - x > 0$ then $2 < \frac{1+x}{1-x} < 3 \Leftrightarrow 2 - 2x < 1 + x < 3 - 3x \Leftrightarrow (1 < 3x \land 4x < 2 \Leftrightarrow \frac{1}{x} < x < \frac{1}{x}$, which is compatible with $x < 1$.
2 marks	If $1 - x < 0$ then $2 < \frac{1+x}{1-x} < 3 \Leftrightarrow 2 - 2x > 1 + x > 3 - 3x \Leftrightarrow$ $1 > 3x \land 4x > 2 \Leftrightarrow \frac{1}{3} > x \land x > \frac{1}{2}$. This is never true. So altogether we have $2 < \frac{1+x}{1-x} < 3 \Leftrightarrow \frac{1}{3} < x < \frac{1}{2}$ Alternatively, it would be permissible to sketch the graph
Standard home- work exercises. 5 marks in total	or of the second s

1 marks	5. To start the induction, $10^3 = 1000 < 1024 = 2^{10}$. So $n^3 < 2^n$ is true for $n = 10$. Now suppose inductively that $n \ge 10$ and $n^3 < 2^n$. Then
5 marks	$\left (n+1)^3 = n^3 + 3n^2 + 3n + 1 < n^3 + 3n^2 + 3n^2 + n^2 = n^3 + 7n^2 < 2n^3 < 2 \cdot 2^n = 2^{n+1} \right $
	So true for n implies true for $n + 1$ and $n^3 < 2^n$ is true for all $n \ge 10$.
Standard home- work exercise 6 marks in total	
	6.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
4 marks	
1 mark 1 mark 1 mark	As a result of this: (i) the g.c.d. d is 9; (ii) from the last row of the last matrix, $r = 39$ and $s = 31$; (iii) from the first row of either of the last two matrices $m = 4$ and $m = -5$;
2 marks Standard home- work exercise 9 marks in total	(iv) The lcm is $351 \times 31 = 10881$.
3 marks	7a) $f((-1,\infty)) = [0,\infty)$ because $x^2 \ge 0$ for all $x \in \mathbb{R}$ and $f(\sqrt{y}) = y$ for all $y \ge 0$. So the image of f is $[0,\infty)$ and f is not surjective. Also, f is not injective, because $f(x) = f(-x)$ for all $x \in (0,1)$, for which $-x \in (-1,0) \subset (-1,\infty)$.
4 marks	b) $f(x) = y \Leftrightarrow y = \frac{x}{x+1} \Leftrightarrow xy + y = x \Leftrightarrow x(y-1) = y \Leftrightarrow$
	$x = \frac{g}{y-1}$. Now $\frac{g}{y-1}$ is defined for $y \in \mathbb{R} \Leftrightarrow y \neq 1$. So the image of f is $(-\infty, 1) \cup (1, \infty) \neq \mathbb{R}$ and f is not surjective. However, f is injective, because, for any $y \neq 1$, the only value of x for which
Standard home-	$f(x) = y$ is $x = \frac{1}{y-1}$.
work exercise	
7 marks in total	

3 marks	8a) Since the image of the map $f(x) = x^2 + 1$ is the set $[1, \infty)$, a conditional definition of this set is $\{x \in \mathbb{R} : x \ge 1\}$ The integers ≥ 2 with 3 as the only prime factor are precisely the
3 marks	numbers of the form 3^m for $m \in \mathbb{Z}_+$. So a constructive definition of this set is $\{3^m : m \in \mathbb{Z}_+\}$.
Standard home- work exercise	
6 marks in total	
1 mark	9a)This is an increasing sequence since $n^3 < (n+1)^3$ for all integers $n \ge 1$.
3 marks	b) $n^2 - 7n + 10 = (n - 2)(n - 5)$. So $x_1 = 4$, $x_2 = x_5 = 0$ and $x_3 = x_4 = -2$. So $x_1 > x_2$ but $x_4 < x_5$ (for example). So this
2 marks	c) Since $x_n = 1 - \frac{2}{n^2 + 1}$ and $\frac{2}{n^2 + 1}$ is decreasing with <i>n</i> , we see that x_n is an increasing sequence.
Standard home- work exercise	
6 marks in total	

Theory from lec-	10. \sim is reflexive if
tures	$x \sim x \forall x \in X$
4 marks	\sim is <i>symmetric</i> if
	$x \sim y \; \Rightarrow \; y \sim x \; \forall \; x, \; y \in X.$
	\sim is <i>transitive</i> if
	$(x \sim y \land y \sim z) \Rightarrow x \sim z \forall x, y, \in X.$
Standard home-	a) ~ is reflexive because $x - x = 0 \in \mathbb{N}$ for all $x \in \mathbb{N}$. It is not
work exercise	symmetric because if $x, y \in \mathbb{N}$ then $x - y \in \mathbb{N} \Leftrightarrow x - y \ge 0$ So
2 marks	for example $2 \sim 1$ but it is not true that $1 \sim 2$. So \sim is not an
Standard home	equivalence relation.
work exercise	b) $x + x = 2x$ is even for an $x \in \mathbb{N}$ and so ~ is symmetric if $x, y \in \mathbb{N}$ and $x + y$ is even then $y + x = x + y$ is even and so ~
4 marks	is symmetric.
	If $x, y, z \in \mathbb{N}$ and $x+y$ and $y+z$ are both even then $(x+y)+(y+z) =$
	x + z + 2y is even. But then since $2y$ is even, $x + z$ is even. So ~
Standard home-	c) $1 + 1 = 2$ is not divisible by 3. So it is not true that $1 \sim 1$ and
work exercise	\sim is not reflexive. So \sim is not an equivalence relation.
1 mark	
Unseen: matri-	d) If I denotes the 2×2 identity matrix then I is invertible with
ces are studied	$I = I^{-1}$ and $A = IAI^{-1}$ for any 2 × 2 matrix A. So ~ is reflexive. If D is an invertible 2 × 2 matrix and $P = PAP^{-1}$ then P^{-1} is
ule MATH103	in F is an invertible 2×2 matrix and $D = FAF$, then F is invertible and $(P^{-1})^{-1} - P$ and $A - P^{-1}BP$. So \sim is symmetric
4 marks	If P and Q are invertible 2×2 matrices and $B = PAP^{-1}$ and
	$C = QBQ^{-1}$, then QP is invertible with inverse $P^{-1}Q^{-1}$ and
	$C = QBQ^{-1} = (QP)A(QP)^{-1}$. So ~is transitive and ~ is an
	equivalence relation.
15 marks in total	

 $6 \mathrm{marks}$

11a) 1 = 1 so the formula is true for n = 0. Now suppose inductively that

$$\sum_{k=0}^{n} x^{k} = \frac{x^{n+1} - 1}{x - 1}.$$

Then

$$\sum_{k=0}^{n+1} x^k = \frac{x^{n+1} - 1}{x - 1} + x^{n+1} = \frac{x^{n+1} - 1 + x^{n+2} - x^{n+1}}{x - 1} = \frac{x^{n+2} - 1}{x - 1}$$

So if the formula holds for n it also holds for n+1. So by induction it holds for all $n \ge 0$.

b) When n = 1 the left-hand side of the formula is x and the right-hand side is

$$\frac{x^3 - 2x^2 + x}{(x-1)^2} = \frac{x(x-1)^2}{(x-1)^2} = x$$

So the formula is true for n = 1. Now suppose inductively that for some $n \ge 1$,

$$\sum_{k=1}^{n} kx^{k} = \frac{nx^{n+2} - (n+1)x^{n+1} + x}{(x-1)^{2}}$$

Then

$$\sum_{k=1}^{n+1} x^k = \frac{nx^{n+2} - (n+1)x^{n+1} + x}{(x-1)^2} + (n+1)x^{n+1}$$
$$= \frac{nx^{n+2} - (n+1)x^{n+1} + x + (n+1)x^{n+3} - 2(n+1)x^{n+2} + (n+1)x^{n+1}}{(x-1)^2}$$
$$= \frac{(n+1)x^{n+3} - (n+2)x^{n+2} + x}{(x-1)^2}$$

So if the formula is true for n is is true for n + 1. So by induction it holds for all $n \ge 1$

Standard homework exercises 15 marks in total

 $9 \mathrm{\ marks}$

Theory from lec- tures 3 marks Unseen but simi- lar to homework exercises 4 marks	$ 12(i) S \cup M \cup D = S + M + D - S \cap M - M \cap D - S \cap D + S \cap M \cap D . $
	(ii) The number of people having at least two courses is
	$ (S \cap M) \cup (M \cap D) \cup (S \cap D) .$
	The intersection of any two of the sets $S \cap M$, $M \cap D$, $S \cap D$ is $S \cap M \cap D$. So the intersection of all three of these sets is also $S \cap M \cap D$. Applying the inclusion-exclusion principle we have
	$ (S \cap M) \cup (M \cap D) \cup (S \cap D) $
	$= S \cap M + M \cap D + S \cap D - 3 S \cap M \cap D + S \cap M \cap D $ = S \cap M + M \cap D + S \cap D - 2 S \cap M \cap D .
Unseen but simi- lar to homework	(iii) Adding the equations from (i) and (ii) the terms $ S\cap M + M\cap D + S\cap D $ cancels and we obtain
exercises 4 marks	$ S\cup M\cup D + (S\cap M)\cup (M\cap D)\cup (S\cap D) = S + M + D - S\cap M\cap D $
	Since 37 people have at least one course and 33 people have at least two courses,
	$70 = 27 + 36 + 21 - S \cap M \cap D = 84 - S \cap M \cap D $
	Thus, the number $ S \cap M \cap D $ of people having all three courses is 14.
Similar to home- work exercises	
4 marks	$(iv) M \cap (S \cup D) = 36 - 4 = 32$. Applying the inclusion-exclusion principle to the two sets $M \cap S$ and $M \cap D$ we have
	$32 = M \cap S + M \cap D - M \cap S \cap D = 26 + M \cap D - 14.$
	So the number of people having the main course and the dessert is
	$ M \cap D = 32 - 12 = 20.$
Similar to home- work exercises 15 marks in total	

Theory from lec-	13(i) A set $A \subset Q$ is a <i>Dedekind cut</i> if
tures 6 marks	• A is nonempty, and bounded above,
	• $x \in A \land y < x \Rightarrow y \in A$
	• A does not have a maximal element.
Similar to home- work exercises	
1 mark 2 marks	(ii)a) Q is not bounded above, so not a Dedekind cut (ii)b) $0 \in \mathbb{Q}$ but $-1 \notin \mathbb{Q}$ and $-1 < 0$ so A is not a Dedekind cut
6 marks	(iii) A is bounded above – by 2 for example because if $x \ge 2$ then $x^3 \ge 8 > 2$. and since $x \mapsto x^3$ is strictly increasing, if $a \in A$ and $b < a$ then $b^3 < a^3 < 2$, so $b \in A$. Finally, we see that A has no maximal element as follows. Let $a \in A$ with $1 \le a$ and let $0 < \varepsilon < 1$. Then $a^2 \ge a \ge 1$ and $\varepsilon^3 < \varepsilon^2 < \varepsilon$. Then
	$(a+\varepsilon)^3 = a^3 + 3a^2\varepsilon + 3a\varepsilon + \varepsilon^3 < a^3 + 3a^2\varepsilon + 3a^2\varepsilon + a^2\varepsilon = a^3 + 7a^2\varepsilon.$
	If we choose $\varepsilon \in \mathbb{Q}$ with $0 < \varepsilon < \frac{2-a^3}{7a^2}$ then $(a + \varepsilon)^3 < 2$ and $a + \varepsilon \in A$. Hence <i>a</i> is not maximal and <i>A</i> has no maximal element. So A is a Dedekind cut.
15 marks in total Standard home- work exercise	