Solutions to MATH105 exam January 2011

Section A

3 marks

3 marks

Standard homework exercises 6 marks in total

1 mark
3 marks
Standard home-
work exercises
4 marks in total

1 mark
1 mark
1 mark
1 mark
1 mark
1 mark
Standard homework exercises 6 marks in total

1 mark
2 marks

2 marks

Standard homework exercises. 5 marks in total
1.a) For a real number $x, x^{2}+x-2=0$ if and only if $x=1$ or $x=-2$.
This is true because $x^{2}+x-2=(x+2)(x-1)=0 \Leftrightarrow x+2=0$ or $x-1=0$.
b) For a real number x, if x is greater than 0 and less than 3 , then x is greater than 1 and less than 2 .
This is clearly false. For example if $x=1$ then $1>0$ and $1<3$ but it is not true that $1>1$.

2a) $\exists x \in \mathbb{R}, x^{2}+x+1 \leq 0$
b) $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x>y \wedge x^{2} \leq y^{2}$.

3a) Yes, $3 \in \pi$ because $\pi>3$
b) No $3 \notin X$ because $3>2$ and so $3 \notin[1,2]$
c) No $3 \notin X$.
d) Yes
e) No because $2+3 i$ is not a real number
f) No because π is not an integer - in fact not even rational.

4a) $1-3 x>5 \Leftrightarrow 3 x<-4 \Leftrightarrow x<-4 / 3$.
b) If $1-x>0$ then $2<\frac{1+x}{1-x}<3 \Leftrightarrow 2-2 x<1+x<3-3 x \Leftrightarrow$ $\left(1<3 x \wedge 4 x<2 \Leftrightarrow \frac{1}{3}<x<\frac{1}{2}\right.$, which is compatible with $x<1$.
If $1-x<0$ then $2<\frac{1+x}{1-x}<3 \Leftrightarrow 2-2 x>1+x>3-3 x \Leftrightarrow$ $1>3 x \wedge 4 x>2 \Leftrightarrow \frac{1}{3}>x \wedge x>\frac{1}{2}$. This is never true.
So altogether we have $2<\frac{1+x}{1-x}<3 \Leftrightarrow \frac{1}{3}<x<\frac{1}{2}$ Alternatively, it would be permissible to sketch the graph.

1 marks

5 marks

Standard home-
work exercise
6 marks in total

4 marks

1 mark
1 mark
1 mark
2 marks
Standard homework exercise 9 marks in total

3 marks

4 marks

Standard homework exercise 7 marks in total
5. To start the induction, $10^{3}=1000<1024=2^{10}$. So $n^{3}<2^{n}$ is true for $n=10$.
Now suppose inductively that $n \geq 10$ and $n^{3}<2^{n}$. Then
$(n+1)^{3}=n^{3}+3 n^{2}+3 n+1<n^{3}+3 n^{2}+3 n^{2}+n^{2}=n^{3}+7 n^{2}<2 n^{3}<2 \cdot 2^{n}=2^{n+1}$
So true for n implies true for $n+1$ and $n^{3}<2^{n}$ is true for all $n \geq 10$.
6.

$$
\begin{aligned}
& \begin{array}{cccccc|ccc}
1 & 0 & 351 & R_{1}-R_{2} & 1 & -1 & 72 & & 1 \\
\hline & \rightarrow & -1 & 72 \\
0 & 1 & 279 & \rightarrow & 0 & 1 & 279 & \rightarrow & -3 \\
R_{2}-3 R_{1} & 4 & 63
\end{array} \\
& \begin{array}{ccc|ccc|}
R_{1}-R_{2} & 4 & -5 & 9 & & 4 \\
\rightarrow & -3 & 4 & -5 & 9 \\
& & \rightarrow & -31 & 39 & 0
\end{array}
\end{aligned}
$$

As a result of this:
(i) the g.c.d. d is 9 ;
(ii) from the last row of the last matrix, $r=39$ and $s=31$;
(iii) from the first row of either of the last two matrices $m=4$ and $n=-5$;
(iv) The lcm is $351 \times 31=10881$.

7a) $f((-1, \infty))=[0, \infty)$ because $x^{2} \geq 0$ for all $x \in \mathbb{R}$ and $f(\sqrt{y})=$ y for all $y \geq 0$. So the image of f is $[0, \infty)$ and f is not surjective. Also, f is not injective, because $f(x)=f(-x)$ for all $x \in(0,1)$, for which $-x \in(-1,0) \subset(-1, \infty)$.
b) $f(x)=y \Leftrightarrow y=\frac{x}{x+1} \Leftrightarrow x y+y=x \Leftrightarrow x(y-1)=y \Leftrightarrow$ $x=\frac{y}{y-1}$. Now $\frac{y}{y-1}$ is defined for $y \in \mathbb{R} \Leftrightarrow y \neq 1$. So the image of f is $(-\infty, 1) \cup(1, \infty) \neq \mathbb{R}$ and f is not surjective. However, f is injective, because, for any $y \neq 1$, the only value of x for which $f(x)=y$ is $x=\frac{y}{y-1}$.

3 marks	8a) Since the image of the map $f(x)=x^{2}+1$ is the set $[1, \infty)$, a conditional definition of this set is $\{x \in \mathbb{R}: x \geq 1\}$ The integers ≥ 2 with 3 as the only prime factor are precisely the numbers of the form 3^{m} for $m \in \mathbb{Z}_{+}$. So a constructive definition of this set is $\left\{3^{m}: m \in \mathbb{Z}_{+}\right\}$.
Standard home- work exercise 6 marks in total	9 a)This is an increasing sequence since $n^{3}<(n+1)^{3}$ for all integers $n \geq 1$. b) $n^{2}-7 n+10=(n-2)(n-5)$. So $x_{1}=4, x_{2}=x_{5}=0$ and $x_{3}=x_{4}=-2 . \operatorname{So~} x_{1}>x_{2}$ but $x_{4}<x_{5}$ (for example). So this sequence is neither increasing or decreasing. c) Since $x_{n}=1-\frac{2}{n^{2}+1}$ and $\frac{2}{n^{2}+1}$ is decreasing with n, we see 2 marks Standard home- work exercise 6 marks in total

Section B

Theory from lectures 4 marks
10. \sim is reflexive if

$$
x \sim x \forall x \in X
$$

\sim is symmetric if

$$
x \sim y \Rightarrow y \sim x \forall x, y \in X
$$

\sim is transitive if

$$
(x \sim y \wedge y \sim z) \Rightarrow x \sim z \forall x, y, \in X
$$

Standard homework exercise 2 marks

Standard homework exercise 4 marks

Standard homework exercise 1 mark
Unseen: matrices are studied in the core module MATH103. 4 marks

15 marks in total
a) \sim is reflexive because $x-x=0 \in \mathbb{N}$ for all $x \in \mathbb{N}$. It is not symmetric because if $x, y \in \mathbb{N}$ then $x-y \in \mathbb{N} \Leftrightarrow x-y \geq 0$ So for example $2 \sim 1$ but it is not true that $1 \sim 2$. So \sim is not an equivalence relation.
b) $x+x=2 x$ is even for all $x \in \mathbb{N}$ and so \sim is symmetric

If $x, y \in \mathbb{N}$ and $x+y$ is even then $y+x=x+y$ is even and so \sim is symmetric.
If $x, y, z \in \mathbb{N}$ and $x+y$ and $y+z$ are both even then $(x+y)+(y+z)=$ $x+z+2 y$ is even. But then since $2 y$ is even, $x+z$ is even. So \sim is transitive and \sim is an equivalence relation.
c) $1+1=2$ is not divisible by 3 . So it is not true that $1 \sim 1$ and \sim is not reflexive. So \sim is not an equivalence relation.
d) If I denotes the 2×2 identity matrix then I is invertible with $I=I^{-1}$ and $A=I A I^{-1}$ for any 2×2 matrix A. So \sim is reflexive. If P is an invertible 2×2 matrix and $B=P A P^{-1}$, then P^{-1} is invertible and $\left(P^{-1}\right)^{-1}=P$ and $A=P^{-1} B P$. So \sim is symmetric. If P and Q are invertible 2×2 matrices and $B=P A P^{-1}$ and $C=Q B Q^{-1}$, then $Q P$ is invertible with inverse $P^{-1} Q^{-1}$ and $C=Q B Q^{-1}=(Q P) A(Q P)^{-1}$. So \sim is transitive and \sim is an equivalence relation.

6 marks

9 marks

11a) $1=1$ so the formula is true for $n=0$. Now suppose inductively that

$$
\sum_{k=0}^{n} x^{k}=\frac{x^{n+1}-1}{x-1}
$$

Then

$$
\sum_{k=0}^{n+1} x^{k}=\frac{x^{n+1}-1}{x-1}+x^{n+1}=\frac{x^{n+1}-1+x^{n+2}-x^{n+1}}{x-1}=\frac{x^{n+2}-1}{x-1}
$$

So if the formula holds for n it also holds for $n+1$. So by induction it holds for all $n \geq 0$.
b) When $n=1$ the left-hand side of the formula is x and the right-hand side is

$$
\frac{x^{3}-2 x^{2}+x}{(x-1)^{2}}=\frac{x(x-1)^{2}}{(x-1)^{2}}=x
$$

So the formula is true for $n=1$. Now suppose inductively that for some $n \geq 1$,

$$
\sum_{k=1}^{n} k x^{k}=\frac{n x^{n+2}-(n+1) x^{n+1}+x}{(x-1)^{2}}
$$

Then

Standard homework exercises 15 marks in total

$$
\begin{gathered}
\sum_{k=1}^{n+1} x^{k}=\frac{n x^{n+2}-(n+1) x^{n+1}+x}{(x-1)^{2}}+(n+1) x^{n+1} \\
=\frac{n x^{n+2}-(n+1) x^{n+1}+x+(n+1) x^{n+3}-2(n+1) x^{n+2}+(n+1) x^{n+1}}{(x-1)^{2}} \\
=\frac{(n+1) x^{n+3}-(n+2) x^{n+2}+x}{(x-1)^{2}}
\end{gathered}
$$

So if the formula is true for n is is true for $n+1$. So by induction it holds for all $n \geq 1$

Theory from lectures 3 marks Unseen but similar to homework exercises
4 marks

12(i) $|S \cup M \cup D|=|S|+|M|+|D|-|S \cap M|-|M \cap D|-\mid S \cap$ $D|+|S \cap M \cap D|$.
(ii)The number of people having at least two courses is

$$
|(S \cap M) \cup(M \cap D) \cup(S \cap D)| .
$$

The intersection of any two of the sets $S \cap M, M \cap D, S \cap D$ is $S \cap M \cap D$. So the intersection of all three of these sets is also $S \cap M \cap D$. Applying the inclusion-exclusion principle we have

$$
\begin{gathered}
|(S \cap M) \cup(M \cap D) \cup(S \cap D)| \\
=|S \cap M|+|M \cap D|+|S \cap D-3| S \cap M \cap D|+|S \cap M \cap D| \\
=|S \cap M|+|M \cap D|+|S \cap D|-2|S \cap M \cap D| .
\end{gathered}
$$

Unseen but similar to homework exercises 4 marks

Similar to homework exercises

4 marks
(iii) Adding the equations from (i) and (ii) the terms $|S \cap M|+$ $|M \cap D|+|S \cap D|$ cancels and we obtain
$|S \cup M \cup D|+|(S \cap M) \cup(M \cap D) \cup(S \cap D)|=|S|+|M|+|D|-|S \cap M \cap D|$
Since 37 people have at least one course and 33 people have at least two courses,

$$
70=27+36+21-|S \cap M \cap D|=84-|S \cap M \cap D|
$$

Thus, the number $|S \cap M \cap D|$ of people having all three courses is 14.
(iv) $|M \cap(S \cup D)|=36-4=32$. Applying the inclusion-exclusion principle to the two sets $M \cap S$ and $M \cap D$ we have

$$
32=|M \cap S|+|M \cap D|-|M \cap S \cap D|=26+|M \cap D|-14 .
$$

So the number of people having the main course and the dessert is

$$
|M \cap D|=32-12=20
$$

Similar to homework exercises 15 marks in total

Theory from lectures 6 marks

13(i) A set $A \subset Q$ is a Dedekind cut if

- A is nonempty, and bounded above,
- $x \in A \wedge y<x \Rightarrow y \in A$
- A does not have a maximal element.

Similar to homework exercises 1 mark
2 marks

6 marks
(ii)a) Q is not bounded above, so not a Dedekind cut
(ii)b) $0 \in \mathbb{Q}$ but $-1 \notin \mathbb{Q}$ and $-1<0$ so A is not a Dedekind cut
(iii) A is bounded above - by 2 for example because if $x \geq 2$ then
$x^{3} \geq 8>2$. and since $x \mapsto x^{3}$ is strictly increasing, if $a \in A$ and $b<a$ then $b^{3}<a^{3}<2$, so $b \in A$.
Finally, we see that A has no maximal element as follows. Let $a \in A$ with $1 \leq a$ and let $0<\varepsilon<1$. Then $a^{2} \geq a \geq 1$ and $\varepsilon^{3}<\varepsilon^{2}<\varepsilon$. Then
$(a+\varepsilon)^{3}=a^{3}+3 a^{2} \varepsilon+3 a \varepsilon+\varepsilon^{3}<a^{3}+3 a^{2} \varepsilon+3 a^{2} \varepsilon+a^{2} \varepsilon=a^{3}+7 a^{2} \varepsilon$. If we choose $\varepsilon \in \mathbb{Q}$ with $0<\varepsilon<\frac{2-a^{3}}{7 a^{2}}$ then $(a+\varepsilon)^{3}<2$ and $a+\varepsilon \in A$. Hence a is not maximal and A has no maximal element. So A is a Dedekind cut.

15 marks in total Standard homework exercise

