Solutions to MATH105 exam August 2014 Section A

1 mark 2 marks 2 marks 2 marks 2 marks Standard home- work exercises 7 marks in to- tal. No reasons required.	1.a) $1 > 2$ and $3 < 6$ This is false. b) It is not the case that either $1 \le 2$ or $4 \le 2$. This is false (because it is the case). c) If x is real and $x^3 > 0$ then $x > 0$. This is true. d) For all real numbers $x, x^2 + x > 2$. This is false. In fact $x^2 + x \le 2 \Leftrightarrow -2 \le x \le 1$.
1 mark 1 mark 2 marks 2 marks Standard home- work exercises. 6 marks in total.	2a) $1 \le 2 \lor 3 \ge 6$. b) $1 \le 2 \lor 4 \le 2$. c) $\exists x \in \mathbb{R}, x^3 > 0 \land x \le 0$. d) $\exists x \in \mathbb{R}, x^2 + x \le 2$.
1 mark 3 marks	3. Base case: When $n = 0$, $2^{0+1} + 3 = 5$, so $x_n = 2^{n+1} + 3$ is true when $n = 0$. Inductive step: Suppose that $n \ge 0$ and $x_n = 2^{n+1} + 3$. Then $x_{n+1} = 2x_n - 3 = 2(2^{n+1} + 3) - 3 = 2^{n+2} + 6 - 3 = 2^{(n+1)+1} + 3$.
1 mark Standard home- work exercise. 5 marks in total.	So if $n \ge 0$, $x_n = 2^{n+1} + 3 \Rightarrow x_{n+1} = 2^{(n+1)+1} + 3$. So, by induction, $x_n = 2^{n+1} + 3$ for all integers $n \ge 0$.
2 marks 3 marks	4. $1584 = 8 \times 198 = 16 \times 99 = 2^4 \times 3^2 \times 11$. The divisors are $2^{n_1} \times 3^{n_2} \times 11^{n_3}$, where n_1, n_2 and n_3 are integers with $0 \le n_1 \le 4, 0 \le n_2 \le 2$ and $0 \le n_3 \le 1$, with each triple (n_1, n_2, n_3) giving a different divisor. So the number of divisors is $5 \times 3 \times 2 = 30$.
Standard home- work exercise 5 marks in total	

1 mark 1 mark 1 mark Standard home- work exercises. 3 marks in total.	5a) $((0,2] \cap [1,3]) \cap [0,4] = [1,2] \cap [0,4] = [1,2].$ b) $(0,2] \cap [1,5]) \cup [2,4] = [1,2] \cup [2,4] = [1,4].$ c) $((0,2] \cup [1,3]) \setminus [2,4] = (0,3] \setminus [2,4] = (0,2).$		
	6.		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$\begin{array}{ccccccccc} R_1 - 7R_2 & 23 & -38 \\ \rightarrow & -3 & 5 \end{array} \begin{vmatrix} 2 & \rightarrow & 23 & -38 \\ 9 & R_1 - 4R_2 & -95 & 157 \end{vmatrix} \stackrel{2}{_1}$		
4 marks			
1 mark 1 mark 1 mark	As a result of this: (i) the g.c.d. d is 1; (ii) Since the gcd is 1, $m_1 = 213$ and $n_1 = 352$; (iii) from the second row of either of the last two matrix $a = 157$ and $b = -95$;		
2 marks Standard home- work exercise. 9 marks in total	(iv) The l.c.m. is $213 \times 352 = 74976$.		

1 mark	7. $f: X \to Y$ is strictly increasing if, whenever $x_1, x_2 \in X$ with
1 mark	$\begin{vmatrix} x_1 < x_2, \text{ we have } f(x_1) < f(x_2). \\ f: X \to Y \text{ is injective, if, whenever } x_1, x_2 \in X \text{ with } x_1 \neq x_2, \text{ we have } f(x_1) \neq f(x_2). \end{vmatrix}$
2 marks	Suppose that $f: X \to Y$ is strictly increasing, and suppose that $x_1, x_2 \in X$ with $x_1 \neq x_2$. Then either $x_1 < x_2$ or $x_2 < x_1$. After renaming the points if necessary, we can assume that $x_1 < x_2$. Then since f is strictly increasing, we have $f(x_1) < f(x_2)$, and hence $f(x_1) \neq f(x_2)$. Since $\{x_1, x_2\}$ is an arbitrary set of two points in X , it follows that f is injective.
1 mark	a) f is strictly increasing on the domain $[0, \infty)$, and hence is injective
1mark 2 marks	b) $f(0) = f(2)$. So f is not injective. c) $1/x_1 = 1/x_2 \Leftrightarrow x_2 = x_1$ (multiplying the original equation through by x_2x_1). So f is injective.
Bookwork fol- lowed by two standard home- work exercise and another bookwork exer- cise which was set in homework. 8 marks in total.	
2 marks 2 marks	8. $ A \cup B = A + B - A \cap B $ Let A be the set of students studying Mathematics and let B be the set of students studying Finance. We are given that
	$ A \cup B = 127, A = 105, B = 56$
	So
	$ A \cap B = A + B - A \cup B = 105 + 56 - 127 = 161 - 127 = 34.$
Book work fol- lowed by stan- dard homework exercise. 4 marks in total.	

2 marks	9. A real number x is algebraic if there are $n \in N$ and integers a_i ,
2 marks	for $0 \le i \le n$, such that $\sum_{i=0}^{n} a_i x^i = 0$. a) If $x = 2 + \sqrt{2}$, then $x - 2 = \sqrt{2}$ and $(x - 2)^2 = 2$, that is,
	$x^{2} - 4x + 4 = 2$, and $x^{2} - 4x + 2 = 0$, and x is algebraic.
2 marks	b) If $y = \sqrt{2 + \sqrt{2}}$, then $y^2 = x$, for x as in a). So $y^4 - 4y^2 + 2 = 0$,
	and y is algebraic.
Bookwork fol-	
lowed by stan-	
dard homework	
exercises.	
6 marks	
1 mark	10. a) Countable.
1 mark	b) Uncountable.
1 mark	c) Countable.
Standard home-	
work exercises.	
3 marks	

Theory from lec- tures 3 marks	$\begin{vmatrix} 11. &\sim \text{ is } reflexive \text{ if} \\ & x \sim x, \forall x \in X \\ &\sim \text{ is } symmetric \text{ if} \\ & x \sim y \Rightarrow y \sim x, \forall x, y \in X. \\ &\sim \text{ is } transitive \text{ if} \\ & (x \sim y \wedge y \sim z) \Rightarrow x \sim z, \forall x, y, \in X. \end{vmatrix}$		
Theory from lec- tures. 2 marks	The equivalence class $[x]$ of x is the set $\{y \in X : y \sim x\}$.		
Standard home- work exercise 1 mark	a) $n \ge n$ for all integers n . So \sim is <i>reflexive</i> . However $2 \ge 1$ and $\neg (1 \ge 2 \text{ so } \sim is not symmetric and not an equivalence relation.$		
Standard home- work exercise. 3 marks	b) For any $x \in \mathbb{R}$, $x - x = 0 \in \mathbb{Z}$. So \sim is reflexive. If $x \sim y$, the $x - y \in \mathbb{Z}$ and hence $y - x = -(x - y) \in \mathbb{Z}$ and $y \sim x$, so \sim is symmetric. If $x \sim y$ and $y \sim z$ then $x - y \in \mathbb{Z}$ and $y - z \in \mathbb{Z}$ and hence $x - z = (x - y) + (y - z) \in \mathbb{Z}$ and $x \sim z$. So \sim is transitive and \sim is an equivalence relation.		
Standard ex- ercise, with notation likely to prove more challenging 4 marks	c) $x/x = 1 = 2^{0}$ for any $x \in \mathbb{Q} \setminus \{0\}$. So $x \sim x$ for any $x \in \mathbb{Q} \setminus \{0\}$ and \sim is reflexive. If $x, y \in \mathbb{Q} \setminus \{0\}$ and $x \sim y$, then $x/y = 2^{n}$ for some $n \in \mathbb{Z}$ and $y/x = 2^{-n}$. Since $-n \in \mathbb{Z}$ we have $y \sim x$. Since x and y can be interchanged, we have $x \sim y \Leftrightarrow y \sim x$, and \sim is symmetric. If $x, y, z \in \mathbb{Q} \setminus \{0\}$ and $x \sim y$ and $y \sim z$, then $x/y = 2^{n_1}$ and $y/z = 2^{n_2}$ for some $n_1, n_2 \in \mathbb{Z}$, and $x/z = x/y \times y/z = 2^{n_1+n_2}$, and since $n_1 + n_2 \in \mathbb{Z}$, we have $x \sim z$ So $(x \sim y \land y \sim z) \Rightarrow x \sim z$ and \sim is transitive. So \sim is an equivalence relation.		
Unseen 2 marks	The equivalence classes of the (positive) primes are all disjoint. For suppose p_1 and p_2 are distinct primes. If $p_1 = p_2 \times 2^n$ for $n \in \mathbb{Z}_+$, then we have two ways of writing p_1 as a product of powers of distinct primes (even if $p_2 = 2$), giving a contradiction. If $p_1 = p_2 \times 2^{-n}$ for $n \in \mathbb{Z}$ then we have $p_2 = p_1 \times 2^n$, giving two ways of writing p_2 as a product of powers of distinct primes, which again gives a contradiction. So $[p_1] \neq [p_2]$ whenever p_1 and p_2 are distinct primes. Since there are infinitely many primes, there are infinitely many primes.		

Section B

infinitely many equivalence classes

15 marks in to-

tal.

Standard home- work exercise 1 mark	12a) Base case: $3 \times 8^2 + 5 = 197 < 256 = 2^8$, so $3n^2 + 5 < 2^n$ is true for $n = 8$.
4 marks	Inductive step: Suppose that for some $n \in \mathbb{Z}$ with $n \ge 8$ we have
	$3n^2 + 5 < 2^n$. Then
	$3(n+1)^2 + 5 = 3n^2 \left(1 + \frac{1}{n}\right)^2 + 5 \le \frac{81}{64} \times 3n^2 + 5 < \frac{81}{64}(3n^2 + 5)$
	$<\frac{81}{64}\times 2^n < 2\times 2^n = 2^{n+1}$
1 mark	So if the inequality holds for some integer $n \ge 8$, it also holds for $n+1$. So by induction $3n^2 + 5 < 2^n$ holds for all integers $n \ge 8$.
Unseen: extra	b) Base case: The base case $n = 1$ is simply $1 + 1 = 1 + 1$, and it
exercise on prob-	is clear that this is true.
lem sheet about	
using induction	
to prove the as-	
sociative law for	
addition of natu-	
ral numbers. 1 mark	
2 marks	Inductive step: Fix $n \in \mathbb{Z}_+$ and suppose that $n + 1 = 1 + n$.
2 marks	Then $(n + 1) + 1 = (1 + n) + 1$. We are allowed to assume that
	(1+n) + 1 = 1 + (n+1). So we have $(n+1) + 1 = 1 + (n+1)$.
1 mark	So is $n + 1 = 1 + n$ we also have $(n + 1) + 1 = 1 + (n + 1)$. So by
	induction, $n + 1 = 1 + n$ for all $n \in \mathbb{Z}_+$
1 mark	Base case So now the base case of $n + m = m + n$ holds for $m = 1$
	and for all $n \in \mathbb{Z}_+$.
3 marks	Inductive step Now for a fixed $n, m \in \mathbb{Z}_+$, suppose that $n + m =$
	m + n. Then
	n + (m + 1) = (n + m) + 1 = (m + n) + 1 = m + (n + 1)
	= m + (1 + n) = (m + 1) + n.
1	
1 mark	So if $n + m = m + n$ we also have $n + (m + 1) = (m + 1) + n$. So by induction on m , $n + m = m + n$ for all $m \in \mathbb{Z}_+$ (for any $n \in \mathbb{Z}_+$).
15 marks in total	

Bookwa		13 $f: X \to Y$ is <i>injective</i> if, whenever $x_1, x_2 \in X$ and $f(x_1) = f(x_1) = f(x_1)$
4 mark	S	$f(x_2)$, then $x_1 = x_2$. $f: X \to Y$ is surjective if $\operatorname{Im}(f) = Y$, where $\operatorname{Im}(f) = \{f(x) : x \in X\}$.
		$f: X \to Y$ is a <i>bijection</i> if $f: X \to Y$ is injective and surjective.
Bookwo similar	ork, and exercise	Suppose that $f : X \to Y$ and $g : Y \to Z$ are both injective. Suppose that x_1 and $x_2 \in X$ and $g \circ f(x_1) = g \circ f(x_2)$, that is,
4 mark		$g(f(x_1)) = g(f(x_2))$. Then since g is injective we have $f(x_1) = f(x_2)$, and since f is injective, we have $x_1 = x_2$. So $g \circ f$ is injective.
Bookwo 2 mark		A is <i>countable</i> if either it is empty, or there is an injective map $f: A \to \mathbb{Z}$. (\mathbb{Z}_+ or \mathbb{N} can also be used as the codomain.)
	nomework	We are allowed to assume the base case $n = 2$. Also, it is clear
5 mark		that $\mathbb{Z} = \mathbb{Z}^1$ is countable. Suppose that $n \geq 2$ and \mathbb{Z}^n is countable. Therefore there is an injective map $f_n : \mathbb{Z}^n \to \mathbb{Z}$ (which is also a bijection, but we do not need this). The map $F : \mathbb{Z}^{n+1} \to \mathbb{Z} \times \mathbb{Z}^n$ given by $F(m_1, m_2, \cdots, m_{n+1}) = (m_1, (m_2, \cdots, m_{n+1}))$ is a bijection.
		The map $G : \mathbb{Z} \times \mathbb{Z}^n \to \mathbb{Z}^2$ given by $G(m_1, (m_2, \cdots, m_{n+1})) = (m_1, f_n(m_2, \cdots, m_{n+1}))$ is also injective. So $G \circ F$ is injective, and $f_2 \circ G \circ F : \mathbb{Z}^{n+1} \to Z$ is injective. So if \mathbb{Z}^n is countable, \mathbb{Z}^{n+1} is also countable. So by induction, \mathbb{Z}^n is countable for all $n \in \mathbb{Z}_+$.
15 mar tal.	ks in to-	
	from lec-	14. A set $A \subset \mathbb{Q}$ is a <i>Dedekind cut</i> if
4 mark	S	a) $A \neq \emptyset$
		b) $\mathbb{Q} \setminus A \neq \emptyset$
		c) $x \in A \land y \in \mathbb{Q} \land y < x \Rightarrow y \in A;$
		d) A does not have a maximal element.
	to home- xercises.	
2 mark	S	(i) $x^2 + x + 3 = (x + \frac{1}{2})^2 + \frac{11}{4} > 0$ for all $x \in \mathbb{Q}$. So $A = \mathbb{Q}$ and A is not a Dedekind cut
4 mark	S	(ii) $0 \in A$ and $2 \notin A$, so properties a) and b) hold. If $f(x) = x^2 + x - 3$ then $-3 \notin A$ but $0 \in A$. So c) does not hold and A is not a Dedekind cut.
5 mark	S	(iii) $1 \in A$ and $2 \notin A$, so properties a) and b) hold. If $-1 \leq x \leq 1$ then $x^3 - x < 2$ and hence $f(x) = x^3 - x - 3 < 0$. Also, $f'(x) = 3x^2 - 1$ is > 0 of $x \leq -1$ or $x \geq 1$. So f is strictly increasing on each of the intervals $(-\infty, -1)$ and $(1, \infty)$. So if $x \leq -1$, $f(x) < 0$, and if $x \in A$ and $y < x$, then $y \in A$ if $y \leq 1$, and if $1 \leq y$ we have $f(y) < f(x) < 0$. So property c) holds. Finally, if $a \in A$ then by continuity of f we have $f(a + 1/n) < 0$ for a; sufficiently large $n \in \mathbb{Z}_+$. So a is not maximal for any $a \in A$. So A is a Dedekind
15 mar	ks in total	cut.
	as in iotal	