Solutions to MATH105 exam August 2014

Section A

1 mark 1 mark 1 mark Standard homework exercises. 3 marks in total.	5a) $((0,2] \cap[1,3]) \cap[0,4]=[1,2] \cap[0,4]=[1,2]$. b) $(0,2] \cap[1,5]) \cup[2,4]=[1,2] \cup[2,4]=[1,4]$. c) $((0,2] \cup[1,3]) \backslash[2,4]=(0,3] \backslash[2,4]=(0,2)$.
	6.
4 marks	
1 mark 1 mark 1 mark	As a result of this: (i) the g.c.d. d is 1 ; (ii) Since the gcd is $1, m_{1}=213$ and $n_{1}=352$; (iii) from the second row of either of the last two matrix $a=157$ and $b=-95$;
2 marks Standard homework exercise. 9 marks in total	(iv) The l.c.m. is $213 \times 352=74976$.

1 mark \mid 7. $f: X \rightarrow Y$ is strictly increasing if, whenever $x_{1}, x_{2} \in X$ with

1 mark
2 marks

1 mark
1mark
2 marks
Bookwork followed by two standard homework exercise and another bookwork exercise which was set in homework. 8 marks in total.

2 marks 2 marks
$x_{1}<x_{2}$, we have $f\left(x_{1}\right)<f\left(x_{2}\right)$.
$f: X \rightarrow Y$ is injective, if, whenever $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$, we have $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
Suppose that $f: X \rightarrow Y$ is strictly increasing, and suppose that $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$. THen either $x_{1}<x_{2}$ or $x_{2}<x_{1}$. After renaming the points if necessary, we can assume that $x_{1}<x_{2}$. Then since f is strictly increasing, we have $f\left(x_{1}\right)<f\left(x_{2}\right)$, and hence $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. Since $\left\{x_{1}, x_{2}\right\}$ is an arbitrary set of two points in X, it follows that f is injective.
a) f is strictly increasing on the domain $[0, \infty)$, and hence is injective
b) $f(0)=f(2)$. So f is not injective.
c) $1 / x_{1}=1 / x_{2} \Leftrightarrow x_{2}=x_{1}$ (multiplying the original equation through by $x_{2} x_{1}$). So f is injective.
8. $|A \cup B|=|A|+|B|-|A \cap B|$

Let A be the set of students studying Mathematics and let B be the set of students studying Finance. We are given that

Book work followed by standard homework exercise.
4 marks in total.

$$
|A \cup B|=127, \quad|A|=105, \quad|B|=56
$$

So
$|A \cap B|=|A|+|B|-|A \cup B|=105+56-127=161-127=34$.

2 marks	9. A real number x is algebraic if there are $n \in N$ and integers a_{i}, for $0 \leq i \leq n$, such that $\sum_{i=0}^{n} a_{i} x^{i}=0$. a) If $x=2+\sqrt{2}$, then $x-2=\sqrt{2}$ and $(x-2)^{2}=2$, that is, $x^{2}-4 x+4=2$, and $x^{2}-4 x+2=0$, and x is algebraic. b) If $y=\sqrt{2+\sqrt{2}, \text { then } y^{2}=x, \text { for } x \text { as in a). So } y^{4}-4 y^{2}+2=0,}$ and y is algebraic.
Bookwork fol- lowed by stan- dard homework exercises.	(marks
1 mark 1 mark 1 mark	10. a) Countable. Standard home- Uncountable. work exercises.
c) Countable.	
marks	

Section B

Theory from lec- \mid 11. \sim is reflexive if
tures 3 marks

$$
x \sim x, \quad \forall x \in X
$$

\sim is symmetric if

$$
x \sim y \Rightarrow y \sim x, \quad \forall x, y \in X
$$

\sim is transitive if

$$
(x \sim y \wedge y \sim z) \Rightarrow x \sim z, \quad \forall x, y, \in X
$$

The equivalence class $[x]$ of x is the set $\{y \in X: y \sim x\}$. tures.
2 marks
Standard home- work exercise 1 mark

Standard home- b) For any $x \in \mathbb{R}, x-x=0 \in \mathbb{Z}$. So \sim is reflexive. If $x \sim y$, the work exercise. 3 marks
a) $n \geq n$ for all integers n. So \sim is reflexive. However $2 \geq 1$ and $\rightharpoondown(1 \geq 2$ so \sim is not symmetric and not an equivalence relation. $x-y \in \mathbb{Z}$ and hence $y-x=-(x-y) \in \mathbb{Z}$ and $y \sim x$, so \sim is symmetric. If $x \sim y$ and $y \sim z$ then $x-y \in \mathbb{Z}$ and $y-z \in \mathbb{Z}$ and hence $x-z=(x-y)+(y-z) \in \mathbb{Z}$ and $x \sim z$. So \sim is transitive and \sim is an equivalence relation.

		and \sim is an equivalence relation.
Standard \quad ex-	c) $x / x=1=2^{0}$ for any $x \in \mathbb{Q} \backslash\{0\}$. So $x \sim x$ for any $x \in \mathbb{Q} \backslash\{0\}$	

ercise, with
notation likely to prove more challenging 4 marks and \sim is reflexive. If $x, y \in \mathbb{Q} \backslash\{0\}$ and $x \sim y$, then $x / y=2^{n}$ for some $n \in \mathbb{Z}$ and $y / x=2^{-n}$. Since $-n \in \mathbb{Z}$ we have $y \sim x$. Since x and y can be interchanged, we have $x \sim y \Leftrightarrow y \sim x$, and \sim is symmetric. If $x, y, z \in \mathbb{Q} \backslash\{0\}$ and $x \sim y$ and $y \sim z$, then $x / y=2^{n_{1}}$ and $y / z=2^{n_{2}}$ for some $n_{1}, n_{2} \in \mathbb{Z}$, and $x / z=x / y \times y / z=2^{n_{1}+n_{2}}$, and since $n_{1}+n_{2} \in \mathbb{Z}$, we have $x \sim z$ So $(x \sim y \wedge y \sim z) \Rightarrow x \sim z$ and \sim is transitive. So \sim is an equivalence relation.
Unseen
2 marks

The equivalence classes of the (positive) primes are all disjoint. For suppose p_{1} and p_{2} are distinct primes. If $p_{1}=p_{2} \times 2^{n}$ for $n \in \mathbb{Z}_{+}$, then we have two ways of writing p_{1} as a product of powers of distinct primes (even if $p_{2}=2$), giving a contradiction. If $p_{1}=p_{2} \times 2^{-n}$ for $n \in \mathbb{Z}$ then we have $p_{2}=p_{1} \times 2^{n}$, giving two ways of writing p_{2} as a product of powers of distinct primes, which again gives a contradiction. So $\left[p_{1}\right] \neq\left[p_{2}\right]$ whenever p_{1} and p_{2} are distinct primes. Since there are infinitely many primes, there are infinitely many equivalence classes

15 marks in total.

Standard homework exercise 1 mark	12a) Base case: $3 \times 8^{2}+5=197<256=2^{8}$, so $3 n^{2}+5<2^{n}$ is true for $n=8$.
4 marks	Inductive step: Suppose that for some $n \in \mathbb{Z}$ with $n \geq 8$ we have $3 n^{2}+5<2^{n}$. Then $\begin{gathered} 3(n+1)^{2}+5=3 n^{2}\left(1+\frac{1}{n}\right)^{2}+5 \leq \frac{81}{64} \times 3 n^{2}+5<\frac{81}{64}\left(3 n^{2}+5\right) \\ <\frac{81}{64} \times 2^{n}<2 \times 2^{n}=2^{n+1} \end{gathered}$
1 mark	So if the inequality holds for some integer $n \geq 8$, it also holds for $n+1$. So by induction $3 n^{2}+5<2^{n}$ holds for all integers $n \geq 8$.
Unseen: extra exercise on problem sheet about using induction to prove the associative law for addition of natural numbers. 1 mark	b) Base case: The base case $n=1$ is simply $1+1=1+1$, and it is clear that this is true.
2 marks	Inductive step: Fix $n \in \mathbb{Z}_{+}$and suppose that $n+1=1+n$. Then $(n+1)+1=(1+n)+1$. We are allowed to assume that $(1+n)+1=1+(n+1)$. So we have $(n+1)+1=1+(n+1)$.
1 mark	So is $n+1=1+n$ we also have $(n+1)+1=1+(n+1)$. So by induction, $n+1=1+n$ for all $n \in \mathbb{Z}_{+}$
1 mark	Base case So now the base case of $n+m=m+n$ holds for $m=1$ and for all $n \in \mathbb{Z}_{+}$.
3 marks	Inductive step Now for a fixed $n, m \in \mathbb{Z}_{+}$, suppose that $n+m=$ $m+n$.Then $\begin{aligned} n+(m+1) & =(n+m)+1=(m+n)+1=m+(n+1) \\ & =m+(1+n)=(m+1)+n . \end{aligned}$
1 mark	So if $n+m=m+n$ we also have $n+(m+1)=(m+1)+n$. So by induction on $m, n+m=m+n$ for all $m \in \mathbb{Z}_{+}$(for any $n \in \mathbb{Z}_{+}$).
15 marks in total	

Bookwork 4 marks	$13 f: X \rightarrow Y$ is injective if, whenever $x_{1}, x_{2} \in X$ and $f\left(x_{1}\right)=$ $f\left(x_{2}\right)$, then $x_{1}=x_{2}$. $f: X \rightarrow Y$ is surjective if $\operatorname{Im}(f)=Y$, where $\operatorname{Im}(f)=\{f(x): x \in$ $X\}$. $f: X \rightarrow Y$ is a bijection if $f: X \rightarrow Y$ is injective and surjective.
Bookwork, and similar exercise 4 marks	Suppose that $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both injective. Suppose that x_{1} and $x_{2} \in X$ and $g \circ f\left(x_{1}\right)=g \circ f\left(x_{2}\right)$, that is, $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$. Then since g is injective we have $f\left(x_{1}\right)=$ $f\left(x_{2}\right)$, and since f is injective, we have $x_{1}=x_{2}$. So $g \circ f$ is injective.
Bookwork 2 marks	A is countable if either it is empty, or there is an injective map $f: A \rightarrow \mathbb{Z}$. (\mathbb{Z}_{+}or \mathbb{N} can also be used as the codomain.)
Set in homework 5 marks	We are allowed to assume the base case $n=2$. Also, it is clear that $\mathbb{Z}=\mathbb{Z}^{1}$ is countable. Suppose that $n \geq 2$ and \mathbb{Z}^{n} is countable. Therefore there is an injective map $f_{n}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ (which is also a bijection, but we do not need this). The map $F: \mathbb{Z}^{n+1} \rightarrow \mathbb{Z} \times \mathbb{Z}^{n}$ given by $F\left(m_{1}, m_{2}, \cdots m_{n+1}\right)=\left(m_{1},\left(m_{2}, \cdots m_{n+1}\right)\right)$ is a bijection. The map $G: \mathbb{Z} \times \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{2}$ given by $G\left(m_{1},\left(m_{2}, \cdots m_{n+1}\right)\right)=$ $\left(m_{1}, f_{n}\left(m_{2}, \cdots m_{n+1}\right)\right)$ is also injective. So $G \circ F$ is injective, and $f_{2} \circ G \circ F: \mathbb{Z}^{n+1} \rightarrow Z$ is injective. So if \mathbb{Z}^{n} is countable, \mathbb{Z}^{n+1} is also countable. So by induction, \mathbb{Z}^{n} is countable for all $n \in \mathbb{Z}_{+}$.
15 marks in total.	
Theory from lectures 4 marks	14. A set $A \subset \mathbb{Q}$ is a Dedekind cut if a) $A \neq \emptyset$ b) $\mathbb{Q} \backslash A \neq \emptyset$ c) $x \in A \wedge y \in \mathbb{Q} \wedge y<x \Rightarrow y \in A$; d) A does not have a maximal element.
Similar to homework exercises.	
2 marks	(i) $x^{2}+x+3=\left(x+\frac{1}{2}\right)^{2}+\frac{11}{4}>0$ for all $x \in \mathbb{Q}$. So $A=\mathbb{Q}$ and A is not a Dedekind cut
4 marks	(ii) $0 \in A$ and $2 \notin A$, so properties a) and b) hold. If $f(x)=$ $x^{2}+x-3$ then $-3 \notin A$ but $0 \in A$. So c) does not hold and A is not a Dedekind cut.
5 marks	(iii) $1 \in A$ and $2 \notin A$, so properties a) and b) hold. If $-1 \leq x \leq 1$ then $x^{3}-x<2$ and hence $f(x)=x^{3}-x-3<0$. Also, $f^{\prime}(x)=$ $3 x^{2}-1$ is >0 of $x \leq-1$ or $x \geq 1$. So f is strictly increasing on each of the intervals $(-\infty,-1)$ and $(1, \infty)$. So if $x \leq-1, f(x)<0$, and if $x \in A$ and $y<x$, then $y \in A$ if $y \leq 1$, and if $1 \leq y$ we have $f(y)<f(x)<0$. So property c) holds. Finally, if $a \in A$ then by continuity of f we have $f(a+1 / n)<0$ for a; sufficiently large $n \in \mathbb{Z}_{+}$. So a is not maximal for any $a \in A$. So A is a Dedekind cut.
15 marks in total	

