Solutions to MATH105 exam September 2013 Section A

1 mark	1.a) -3 is an integer.
2 marks	b) There is a real number such that $x^2 + x < -1$. This is false (because $x^2 + x + 1 = (x + \frac{1}{2})^2 + \frac{3}{2} > 0$ for all $x \in \mathbb{R}$).
2 marks	c) For any integer n , 2 divides n if and only if 2 divides n^2 . This is true.
2 marks	d) For all real numbers x and y, $x \leq y$ if and only if $x^2 \leq y^2$. This is false (because $-2 \leq 1$ but $4 \geq 1$, for example).
Standard home- work exercises. No reasons required. 7 marks in total	
2 marks 4 marks	2a) $x^2 \ge 9 \Leftrightarrow x \ge 3 \lor x \le -3$. So $\{x : x^2 < 9\} = (-\infty, -3] \cup [3, \infty)$. b) For $\frac{x}{x-2} > 2$ either both x and $x + 2$ have to be > 0 or both < 0 . If they are both positive we must have, in addition, $x > 2x - 4$, that is, $x < 4$. If they are both negative, we must have in addition that $x < 2x - 4$, that is, $x > 4$, which is impossible. So we must have $0 < x < 4$, that is,
	$\left\{x \in \mathbb{R} : \frac{x}{x+2} > 3\right\} = (0,4).$
Standard home- work exercises. 6 marks in total	
1 mark 4 marks	3. Base case : When $n = 4$ both n^4 and 4^n are 4^4 , so $n^4 \le 4^n$ is true when $n = 4$. Inductive step Suppose that $n \ge 4$ and $n^4 \le 4^n$. Then
	$(n+1)^4 = n^4 \times \left(1 + \frac{1}{n}\right)^4 \le n^4 \times \left(\frac{5}{4}\right)^4 = \frac{625}{256}n^3 < 3n^4 \le 3 \times 4^n < 4^{n+1}.$
1 mark Standard home- work exercises. 6 marks in total.	So if $n \ge 4$, $n^4 \le 4^n \Rightarrow (n+1)^4 \le 4^{n+1}$. So, by induction, $n^4 \le 4^n$ for all integers $n \ge 4$.

6 marks	4. $1672 = 8 \times 209 = 2^3 \times 11 \times 19$. So the divisors of 1672 are $2^{k_1} \times 11^{k_2} \times 19^{k_3}$ for integers $0 \le k_1 \le 3, 0 \le k_2 \le 1, 0 \le k_3 \le 1$, that is, 1, 2, 4, 8, 11, 22, 44, 88, 19, 38, 76, 152, 209, 418, 836, 1672.
Standard home- work exercises.	
6 marks in total.	
3 marks	5. If m divides n then $n = mn_1$ for some $n_1 \in \mathbb{Z}$. If n divides p
	then $p = np_1$ for some $p_1 \in \mathbb{Z}$.
2 marks	If $m \mid n$ and $n \mid p$, we have $p = np_1 = m(n_1p_1)$ and since $n_1p_1 \in \mathbb{Z}$,
	it follows that $m \mid p$.
Bookwork.	
5 marks in total.	
	0.
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$R_2 - 4R_1$
	$\begin{array}{cccc} R_1 - 5R_2 & 21 & -68 & 0 \\ \to & -4 & 13 & 11 \end{array}$
4 marks	
	As a result of this:
1 mark	(i) the g c d d is 11:
1 mark	(ii) from the first row of the last matrix $m_1 = 68$ and $n_1 = 21$:
1 mark	(iii) from the second row of either of the last two matrices $a = -4$
1 11100111	and $b = 13$:
2 marks	(iv) The l.c.m. is $748 \times 21 = 231 \times 68 = 15708$.
Standard home-	
work exercise.	
9 marks in total	

2 marks	7 $f: X \to Y$ is injective if $\forall x_1, x_2 \in X, f(x_1) = f(x_2 \Leftrightarrow x_1 = x_2)$.
2 marks	The image of f, $\text{Im}(f)$ is $\{f(x) : x \in X\}$. f is a bijection if f is
	injective and $\text{Im}(f) = Y$, that is, f is also surjective
1 marks	$y = \frac{2x-1}{2x-1}$ $\Rightarrow 2x = 1 = y(x+2) = xy + 2y$ $\Rightarrow x(2 = y) = -1$
4 marks	$y = \frac{1}{x+2} \Leftrightarrow 2x = 1 = y(x+2) = xy + 2y \Leftrightarrow x(2-y) = 1$
	$2y+1 \Leftrightarrow x = \frac{2y+1}{2}$. It follows that f is injective. Also, we see
	that $x > 0 \Leftrightarrow 0 < y < 2$. So $\operatorname{Im}(f) = (0, 2)$.
Standard theory	
followed by stan-	
dard homework	
exercise.	
8 marks in total	
2 marks	8. (i) $\frac{\sqrt{3}+2}{5}$ is rational $\Leftrightarrow \frac{\sqrt{3}+2}{5} - \frac{2}{5} = \frac{\sqrt{3}}{5}$ is rational, $\Leftrightarrow \sqrt{3}$
	is rational. Since $\sqrt{3}$ is not rational, it follows that $\frac{\sqrt{3}+2}{\sqrt{3}+2}$ is not
	is fational. Since $\sqrt{3}$ is not fational, it follows that $\frac{1}{5}$
	either.
3 marks	(ii) Provided $x \neq -\frac{1}{3}$,
	$x = \frac{3x+5}{3x+1} \Leftrightarrow x(3x+1) = 3x+5 \Leftrightarrow 3x^2 - 2x - 5 = 0$
	$\Leftrightarrow (3x-5)(x+1) = 0.$
	So the positive solution to this is $x = \frac{5}{3}$, which is rational.
Standard home-	
work exercises:	
unseen element	
in second one.	
5 marks in total.	
1 mark	9(i) uncountable;
1 mark	(ii) countable;
1 mark	c) countable.
Standard home-	
work exercises	
3 marks in total	

Section B		
Theory from lec- tures 3 marks	10. ~ is reflexive if $x \sim x \forall x \in X$	
	$x \sim y \; \Rightarrow \; y \sim x \; \forall \; x, \; y \in X.$	
	\sim is <i>transitive</i> if	
	$(x \sim y \land y \sim z) \Rightarrow x \sim z \forall x, y, \in X.$	
Theory from lec- tures 2 marks	The equivalence class $[x]$ of x is the set $\{y \in X : y \sim x\}$.	
Standard home- work exercise.	(i) For this relation, $1 \sim 2$ and it is not true that $2 \sim 1$. So \sim is not symmetric, and is not an equivalence relation.	
1 mark Standard home- work exercise. 3 marks	(ii) For any nonzero integer m , $m^2 > 0$ and so \sim is reflexive on $\mathbb{Z} \setminus \{0\}$. For any integers m and n , $mn = nm$ and hence $mn > 0 \Leftrightarrow nm > 0$. So \sim is symmetric If m , n and p are all non-zero integers and $m \sim n$ and $n \sim p$, and m , then m and n must both be positive or both negative, since $mn > 0$. Similarly n and p must both be positive or both negative. So m and p must both be positive or both negative, and hence $mp > 0$ and $m \sim p$. So \sim is transitive and \sim is an equivalence relation	
Harder exercise, not previously set.	(iii) For any $(x_1, y_1) \in \mathbb{R}$, $x_1 - x_1 + 2(y_1 - y_1) = 0 + 0 = 0$. So ~ is reflexive. For any (x_1, y_1) and $(x_2, y_2) \in \mathbb{R}$,	
5 marks	$(x_2 - x_1) + 2(y_2 - y_1) = -((x_1 - x_2) + 2(y_1 - y_2)).$	
	So $x_1 - x_2 + 2(y_1 - y_2) = 0 \Leftrightarrow x_2 - x_1 + 2(y_2 - y_1) = 0$, and \sim is symmetric. For any $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in \mathbb{R}$	
	$((x_1-x_2)+2(y_1-y_2))+(x_2-x_3)+2(y_2-y_3)) = (x_1-x_3)+2(y_1-y_3).$	
	So	
	$(x_1 - x_2 + 2(y_1 - y_2) = 0) \land (x_2 - x_3 + 2(y_2 - y_3) = 0) \Rightarrow (x_1 - x_3) + 2(y_1 - y_3) = 0,$	
3 marks	and \sim is transitive. Fix $(x_1, y_1) \in \mathbb{R}^2$ and write $c - x_1 + 2y_1$. Then $(x, y) \sim (x_1, y_1)$ $\Leftrightarrow x + 2y = c$, that is, if and only if (x, y) is on the straight line x + 2y = c. The equivalence class of $(a, 0)$ is the straight line $x + 2y = a$ or in parametric form $\{(a - 2t, t) : t \in \mathbb{R}\}$	
15 marks in to- tal.		

Standard home- work exercise. 1 mark	10(i) . Base case: $1^2 = 1 = (1 \times (1+1) \times (2+1))/6$. So the formula holds for $n=1$
5 marks	Inductive step Suppose that for some $n \in \mathbb{Z}_+$ we have $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$ Then
	$\sum_{k=1}^{n+1} k^2 = \sum_{k=1}^n k^2 + (n+1)^2$
	$=\frac{n(n+1)(2n+1)}{6} + (n+1)^2 = (n+1)\left(\frac{n(2n+1)}{6} + n + 1\right)$
	$=\frac{(n+1)(n(2n+1)+6n+6)}{6}=\frac{(n+1)(2n^2+7n+6)}{6}$
	$\frac{(n+1)(2n+3)(n+2)}{6} = \frac{(n+1)(n+1+1)(2(n+1)+1)}{6}.$
	So
	$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \implies \sum_{k=1}^{n+1} k^2 = \frac{(n+1)(n+1+1)(2(n+1)+1)}{6}$
1 mark	So by induction $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$ holds for all $n \in \mathbb{Z}_+$.
Proved in lec- tures.	(ii) Base case 0 is divisible by 2. So the statement is true for $n = 0$.
1 mark	
4 marks	Inductive step Suppose that exactly one of $n, n-1$ is divisible by 2. Since $n+1 = (n-1)+2$ is divisible by 2 if and only if $n-1$ is, exactly one of n and $n-1$ is divisible by 2 if and only if exactly one of $n = (n+1) - 1$ and $n+1$ is divisible by 2. So if the statement is true for n it is true for $n+1$
1 mark	So by induction, for all $n \in \mathbb{N}$, exactly one of n and $n-1$ is divisible by 2
3 marks	If $n \in \mathbb{N}$ is divisible by 2 then $n = 2k$ for some $k \in \mathbb{N}$. If $n \in \mathbb{N}$ and $n-1$ is divisible by 2 then $n-1 = 2k$ for some $k \in \mathbb{Z}_+ \subset N$ and $n = 2k + 1$ for some $k \in \mathbb{N}$
15 marks in to- tal.	

Theory from lec- tures. 2 marks	11(i) The inclusion/exclusion principle for two finite sets A and B is that $ A \cup B = A + B - A \cap B .$
Standard home- work exercises. 2 marks	(ii) If V is the set of people who had vanilla and B is the set of people who had another flavour then $ B = 164$, $ V = 139$ and $ V \cup B = 215$. The set of people who bought had both vanilla and another flavour i is $V \cap B$ and from (i) we have
	$ V \cap B = V + B - V \cup B = 139 + 164 - 215 = 303 - 215 = 88.$
2 marks	(iii) the set of people who had only vanilla is $V \setminus B$. We have:
	$ V \setminus B = V - V \cap B = 139 - 88 = 51.$
1 mark	(iv) The set of people not having vanilla is $B \setminus V = (V \cup B) \setminus V$, so we have
	$ B \setminus V = V \cup B - V = 215 - 139 = 76.$
2 marks	(v) Let C be the set of people having chocolate. Since 31 of the 215 people had neither vanilla nor chocolate, 184 had either vanilla or chocolate, that is $ V \cup C = 184$. We are also given $ V \cap C = 28$. So from (i) with $A = V$ and $B = C$, we have
	$184 = V \cup C = V + C - V \cap C = C + 139 - 28 = C + 111,$
2 marks	that is, $ M = 184 - 111 = 73$, so 73 people had chocolate icecream. (vi) The set of people who had chocolate and not vanilla is $C \setminus V$, and
	$ C \setminus V = C - V \cap C = 73 - 28 = 45.$
2 marks	So 45 people had chocolate and not vanilla. (vii) In (i) we take $V \cap C$ and $V \cap O$ to replace A and B, because $V \cap (C \cup O) = (V \cap C) \cup (V \cap O)$. Also $(V \cap C) \cap (V \cap O) = V \cap C \cap O$. So this gives
	$ V \cap (C \cup O) = V \cap C + V \cap O - V \cap C \cap O .$
2 marks	(viii) Given that $ V \cap C = 28$, and $ V \cap O = 75$, and $ V \cap (C \cup O) = 88$ from (ii), we have, from (vii)
	$88 = 28 + 75 - V \cap C \cap O $
45 1	and hence $ V \cap C \cap O = 103 - 88 = 15$, that is, 15 people had vanilla and chocolate and something else.
15 marks in to- tal.	

Theory from lec-	12. A set $A \subset \mathbb{Q}$ is a <i>Dedekind cut</i> if:
tures. 4 marks	a) A is nonempty, and bounded above;
	b) $x \in A \land y \in \mathbb{Q} \land y < x \Rightarrow y \in A;$
	c) A does not have a maximal element.
Similar to home- work exercises.	
1 mark	(i) $A = \{x \in \mathbb{Q} : x > -1/5\}$ is not bounded above. So a) is violated and A is not a Dedekind cut.
2 marks	(ii) $1 \in A$ and $0 \notin A$ (for example) So property b) is violated and A is not a Dedekind cut.
4 marks	(iii) If $f(x) = x^3 - 12x + 20$, then $f'(x) = 3x^2 - 12$ has zeros at ± 12 , and as $f''(x) = 6x$, we see that -2 is a local maximum and 2 is a local minimum, and f is strictly increasing on $(-\infty, -2]$ and on $[2, \infty)$, and strictly decreasing on $[-2, 2]$. Since $f(2) = 4 > 0$, we see that $f(x) \ge 4$ for all $x \ge -2$. So A is bounded above by -2 . But $f(-5) < 0$, so $-5 \in A$ and A is nonempty. Since f is strictly increasing on $(-\infty, -2]$, if $f(x) < 0$ and $y < x$ then $f(y) < 0$, that is, property b) holds. If $x \in A$ is a maximal element in A then $f(x) < 0$. But then by continuity of f at x, there is a rational $\delta > 0$ such that for any $y \in \mathbb{Q}$ with $x \le y \le x + \delta$, we have $f(y) < 0$, that is property c) holds for A. So A is a Dedekind cut.
4 marks	(iv) Once again, if $f(x) = x^3 - 12x + 1$, then $f'(x) = 3x^2 - 12$ has zeros at ± 2 , -2 is a local maximum, and f is strictly increasing on $(-\infty, -2]$, with $f(-2) = 17 > 0$. By the definition of A , the set is bounded above by -2 , and since $-2 \in A$, it is non-empty. As in (iii), property b) holds because f is strictly increasing on $(-\infty, -2]$ and, again as in (iii), property c) holds because of continuity of f . So A is a Dedekind cut
15 marks in to- tal.	