Solutions to MATH105 exam September 2013

Section A

1 mark	1.a) -3 is an integer. This is true.
2 marks	b) There is a real number such that $x^{2}+x<-1$. This is false (because $x^{2}+x+1=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}>0$ for all $x \in \mathbb{R}$).
2 marks	c) For any integer $n, 2$ divides n if and only if 2 divides n^{2}. This is true.
2 marks	d) For all real numbers x and $y, x \leq y$ if and only if $x^{2} \leq y^{2}$. This is false (because $-2 \leq 1$ but $4 \geq 1$, for example).
Standard homework exercises. No reasons required. 7 marks in total	
2 marks 4 marks	2a) $x^{2} \geq 9 \Leftrightarrow x \geq 3 \vee x \leq-3$. So $\left\{x: x^{2}<9\right\}=(-\infty,-3] \cup[3, \infty)$. b) For $\frac{x}{x-2}>2$ either both x and $x+2$ have to be >0 or both <0. If they are both positive we must have, in addition, $x>2 x-4$, that is, $x<4$. If they are both negative, we must have in addition that $x<2 x-4$, that is, $x>4$, which is impossible. So we must have $0<x<4$, that is, $\left\{x \in \mathbb{R}: \frac{x}{x+2}>3\right\}=(0,4)$
Standard homework exercises. 6 marks in total	
1 mark	3. Base case: When $n=4$ both n^{4} and 4^{n} are 4^{4}, so $n^{4} \leq 4^{n}$ is true when $n=4$.
4 marks	Inductive step Suppose that $n \geq 4$ and $n^{4} \leq 4^{n}$. Then $(n+1)^{4}=n^{4} \times\left(1+\frac{1}{n}\right)^{4} \leq n^{4} \times\left(\frac{5}{4}\right)^{4}=\frac{625}{256} n^{3}<3 n^{4} \leq 3 \times 4^{n}<4^{n+1}$
	So if $n \geq 4, n^{4} \leq 4^{n} \Rightarrow(n+1)^{4} \leq 4^{n+1}$.
1 mark Standard homework exercises. 6 marks in total.	So, by induction, $n^{4} \leq 4^{n}$ for all integers $n \geq 4$.

6 marks	4. $1672=8 \times 209=2^{3} \times 11 \times 19$. So the divisors of 1672 are $2^{k_{1}} \times 11^{k_{2}} \times 19^{k_{3}}$ for integers $0 \leq k_{1} \leq 3,0 \leq k_{2} \leq 1,0 \leq k_{3} \leq 1$, that is, $1,2,4,8,11,22,44,88,19,38,76,152,209,418,836,1672$.
Standard homework exercises. 6 marks in total	
3 marks	5. If m divides n then $n=m n_{1}$ for some $n_{1} \in \mathbb{Z}$. If n divides p then $p=n p_{1}$ for some $p_{1} \in \mathbb{Z}$.
2 marks	If $m \mid n$ and $n \mid p$, we have $p=n p_{1}=m\left(n_{1} p_{1}\right)$ and since $n_{1} p_{1} \in \mathbb{Z}$, it follows that $m \mid p$.
Bookwork. 5 marks in total.	
	6.
	$\begin{array}{ll\|lccc\|cccc\|} 1 & 0 & 748 & R_{1}-3 R_{2} & 1 & -3 & 55 & & 1 & -3 \\ 0 & 1 & 231 & \rightarrow & 0 & 1 & 231 & \rightarrow & -4 & \\ R_{2}-4 R_{1} & -4 & 13 & 11 \end{array}$
	$\begin{array}{ccc\|c} R_{1}-5 R_{2} & 21 & -68 & 0 \\ \rightarrow & -4 & 13 & 11 \end{array}$
4 marks	
	As a result of this:
1 mark	(i) the g.c.d. d is 11;
1 mark	(ii) from the first row of the last matrix, $m_{1}=68$ and $n_{1}=21$;
1 mark	(iii) from the second row of either of the last two matrices $a=-4$ and $b=13$;
2 marks	(iv) The l.c.m. is $748 \times 21=231 \times 68=15708$.
Standard homework exercise. 9 marks in total	

Standard homework exercises: unseen element in second one.
5 marks in total.
1 mark
1 mark
1 mark
Standard homework exercises 3 marks in total.

Section B

Theory from lectures 3 marks

Theory from lectures
2 marks
Standard homework exercise.
1 mark
Standard homework exercise. 3 marks

Harder exercise, not previously set.
3 marks

3 marks

15 marks in total.
10. \sim is reflexive if

$$
x \sim x \forall x \in X
$$

\sim is symmetric if

$$
x \sim y \Rightarrow y \sim x \forall x, y \in X
$$

\sim is transitive if

$$
(x \sim y \wedge y \sim z) \Rightarrow x \sim z \forall x, y, \in X
$$

The equivalence class $[x]$ of x is the set $\{y \in X: y \sim x\}$.
(i) For this relation, $1 \sim 2$ and it is not true that $2 \sim 1$. So \sim is not symmetric, and is not an equivalence relation.
(ii) For any nonzero integer $m, m^{2}>0$ and so \sim is reflexive on $\mathbb{Z} \backslash\{0\}$. For any integers m and $n, m n=n m$ and hence $m n>0 \Leftrightarrow$ $n m>0$. So \sim is symmetric If m, n and p are all non-zero integers and $m \sim n$ and $n \sim p$, and m, then m and n must both be positive or both negative, since $m n>0$. Similarly n and p must both be positive or both negative. So m and p must both be positive or both negative, and hence $m p>0$ and $m \sim p$. So \sim is transitive and \sim is an equivalence relation
(iii) For any $\left(x_{1}, y_{1}\right) \in \mathbb{R}, x_{1}-x_{1}+2\left(y_{1}-y_{1}\right)=0+0=0$. So \sim is reflexive.
For any $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right) \in \mathbb{R}$,

$$
\left(x_{2}-x_{1}\right)+2\left(y_{2}-y_{1}\right)=-\left(\left(x_{1}-x_{2}\right)+2\left(y_{1}-y_{2}\right)\right)
$$

So $x_{1}-x_{2}+2\left(y_{1}-y_{2}\right)=0 \Leftrightarrow x_{2}-x_{1}+2\left(y_{2}-y_{1}\right)=0$, and \sim is symmetric.
For any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in \mathbb{R}$
$\left.\left(\left(x_{1}-x_{2}\right)+2\left(y_{1}-y_{2}\right)\right)+\left(x_{2}-x_{3}\right)+2\left(y_{2}-y_{3}\right)\right)=\left(x_{1}-x_{3}\right)+2\left(y_{1}-y_{3}\right)$.
So
$\left(x_{1}-x_{2}+2\left(y_{1}-y_{2}\right)=0\right) \wedge\left(x_{2}-x_{3}+2\left(y_{2}-y_{3}\right)=0\right) \Rightarrow\left(x_{1}-x_{3}\right)+2\left(y_{1}-y_{3}\right)=0$,
and \sim is transitive.
Fix $\left(x_{1}, y_{1}\right) \in \mathbb{R}^{2}$ and write $c-x_{1}+2 y_{1}$. Then $(x, y) \sim\left(x_{1}, y_{1}\right)$ $\Leftrightarrow x+2 y=c$, that is, if and only if (x, y) is on the straight line $x+2 y=c$. The equivalence class of $(a, 0)$ is the straight line $x+2 y=a$, or in parametric form $\{(a-2 t, t): t \in \mathbb{R}\}$.

Standard homework exercise.
1 mark
5 marks

1 mark
Proved in lectures.
1 mark
4 marks

1 mark

3 marks

15 marks in total.

10(i). Base case: $1^{2}=1=(1 \times(1+1) \times(2+1)) / 6$. So the formula holds for $n=1$

Inductive step Suppose that for some $n \in \mathbb{Z}_{+}$we have $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$. Then

$$
\begin{gathered}
\sum_{k=1}^{n+1} k^{2}=\sum_{k=1}^{n} k^{2}+(n+1)^{2} \\
=\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2}=(n+1)\left(\frac{n(2 n+1)}{6}+n+1\right) \\
=\frac{(n+1)(n(2 n+1)+6 n+6}{6}=\frac{(n+1)\left(2 n^{2}+7 n+6\right)}{6} \\
\frac{(n+1)(2 n+3)(n+2)}{6}=\frac{(n+1)(n+1+1)(2(n+1)+1}{6} .
\end{gathered}
$$

So
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} \Rightarrow \sum_{k=1}^{n+1} k^{2}=\frac{(n+1)(n+1+1)(2(n+1)+1)}{6}$.

So by induction $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$ holds for all $n \in \mathbb{Z}_{+}$.
(ii) Base case 0 is divisible by 2. So the statement is true for $n=0$.

Inductive step Suppose that exactly one of $n, n-1$ is divisible by 2. Since $n+1=(n-1)+2$ is divisible by 2 if and only if $n-1$ is, exactly one of n and $n-1$ is divisible by 2 if and only if exactly one of $n=(n+1)-1$ and $n+1$ is divisible by 2 . So if the statement is true for n, it is true for $n+1$.
So by induction, for all $n \in \mathbb{N}$, exactly one of n and $n-1$ is divisible by 2 .
If $n \in \mathbb{N}$ is divisible by 2 then $n=2 k$ for some $k \in \mathbb{N}$. If $n \in \mathbb{N}$ and $n-1$ is divisible by 2 then $n-1=2 k$ for some $k \in \mathbb{Z}_{+} \subset N$ and $n=2 k+1$ for some $k \in \mathbb{N}$.

Theory from lectures.
2 marks

Standard homework exercises.
2 marks

2 marks

1 mark

2 marks

2 marks

2 marks

2 marks

15 marks in total.

11(i) The inclusion/exclusion principle for two finite sets A and B is that

$$
|A \cup B|=|A|+|B|-|A \cap B| .
$$

(ii) If V is the set of people who had vanilla and B is the set of people who had another flavour then $|B|=164,|V|=139$ and $|V \cup B|=215$. The set of people who bought had both vanilla and another flavour i is $V \cap B$ and from (i) we have
$|V \cap B|=|V|+|B|-|V \cup B|=139+164-215=303-215=88$.
(iii) the set of people who had only vanilla is $V \backslash B$. We have:

$$
|V \backslash B|=|V|-|V \cap B|=139-88=51 .
$$

(iv) The set of people not having vanilla is $B \backslash V=(V \cup B) \backslash V$, so we have

$$
|B \backslash V|=|V \cup B|-|V|=215-139=76
$$

(v) Let C be the set of people having chocolate. Since 31 of the 215 people had neither vanilla nor chocolate, 184 had either vanilla or chocolate, that is $|V \cup C|=184$. We are also given $|V \cap C|=28$. So from (i) with $A=V$ and $B=C$, we have
$184=|V \cup C|=|V|+|C|-|V \cap C|=|C|+139-28=|C|+111$,
that is, $|M|=184-111=73$, so 73 people had chocolate icecream. (vi) The set of people who had chocolate and not vanilla is $C \backslash V$, and

$$
|C \backslash V|=|C|-|V \cap C|=73-28=45
$$

So 45 people had chocolate and not vanilla.
(vii) In (i) we take $V \cap C$ and $V \cap O$ to replace A and B, because $V \cap(C \cup O)=(V \cap C) \cup(V \cap O)$. Also $(V \cap C) \cap(V \cap O)=V \cap C \cap O$. So this gives

$$
|V \cap(C \cup O)|=|V \cap C|+|V \cap O|-|V \cap C \cap O| .
$$

(viii) Given that $|V \cap C|=28$, and $|V \cap O|=75$, and $|V \cap(C \cup O)|=$ 88 from (ii), we have, from (vii)

$$
88=28+75-|V \cap C \cap O|
$$

and hence $|V \cap C \cap O|=103-88=15$, that is, 15 people had vanilla and chocolate and something else.

Theory from lectures.
4 marks

Similar to homework exercises. 1 mark

2 marks
4 marks

4 marks
12. A set $A \subset \mathbb{Q}$ is a Dedekind cut if:
a) A is nonempty, and bounded above;
b) $x \in A \wedge y \in \mathbb{Q} \wedge y<x \Rightarrow y \in A$;
c) A does not have a maximal element.
(i) $A=\{x \in \mathbb{Q}: x>-1 / 5\}$ is not bounded above. So a) is violated and A is not a Dedekind cut.
(ii) $1 \in A$ and $0 \notin A$ (for example) So property b) is violated and A is not a Dedekind cut.
(iii) If $f(x)=x^{3}-12 x+20$, then $f^{\prime}(x)=3 x^{2}-12$ has zeros at ± 12, and as $f^{\prime \prime}(x)=6 x$, we see that -2 is a local maximum and 2 is a local minimum, and f is strictly increasing on $(-\infty,-2]$ and on $[2, \infty)$, and strictly decreasing on $[-2,2]$. Since $f(2)=4>0$, we see that $f(x) \geq 4$ for all $x \geq-2$. So A is bounded above by -2 . But $f(-5)<0$, so $-5 \in A$ and A is nonempty. Since f is strictly increasing on $(-\infty,-2$], if $f(x)<0$ and $y<x$ then $f(y)<0$, that is, property b) holds. If $x \in A$ is a maximal element in A then $f(x)<0$. But then by continuity of f at x, there is a rational $\delta>0$ such that for any $y \in \mathbb{Q}$ with $x \leq y \leq x+\delta$, we have $f(y)<0$, that is $y \in A$, contradicting x being a maximal element, that is property c) holds for A. So A is a Dedekind cut.
(iv) Once again, if $f(x)=x^{3}-12 x+1$, then $f^{\prime}(x)=3 x^{2}-12$ has zeros at $\pm 2,-2$ is a local maximum, and f is strictly increasing on $(-\infty,-2$], with $f(-2)=17>0$. By the definition of A, the set is bounded above by -2 , and since $-2 \in A$, it is non-empty. As in (iii), property b) holds because f is strictly increasing on $(-\infty,-2$] and, again as in (iii), property c) holds because of continuity of f. So A is a Dedekind cut.

15 marks in total.

