
Solutions to MATH105 exam September 2013

Section A

1 mark 1.a) −3 is an integer.
This is true.

2 marks b) There is a real number such that x2 + x < −1.
This is false (because x2 + x+ 1 = (x+ 1

2
)2 + 3

4
> 0 for all x ∈ R).

2 marks c) For any integer n, 2 divides n if and only if 2 divides n2.
This is true.

2 marks d) For all real numbers x and y, x ≤ y if and only if x2 ≤ y2.
This is false (because −2 ≤ 1 but 4 ≥ 1, for example).

Standard home-
work exercises.
No reasons
required.
7 marks in total

2 marks 2a)x2 ≥ 9⇔ x ≥ 3∨x ≤ −3. So {x : x2 < 9} = (−∞,−3]∪ [3,∞).

4 marks b) For
x

x− 2
> 2 either both x and x + 2 have to be > 0 or both

< 0. If they are both positive we must have, in addition, x > 2x−4,
that is, x < 4. If they are both negative, we must have in addition
that x < 2x − 4, that is, x > 4, which is impossible. So we must
have 0 < x < 4, that is,{

x ∈ R :
x

x+ 2
> 3

}
= (0, 4).

Standard home-
work exercises.
6 marks in total

1 mark 3. Base case: When n = 4 both n4 and 4n are 44, so n4 ≤ 4n is
true when n = 4.

4 marks Inductive step Suppose that n ≥ 4 and n4 ≤ 4n. Then

(n+1)4 = n4×
(

1 +
1

n

)4

≤ n4×
(

5

4

)4

=
625

256
n3 < 3n4 ≤ 3×4n < 4n+1.

So if n ≥ 4, n4 ≤ 4n ⇒ (n+ 1)4 ≤ 4n+1 .
1 mark So, by induction, n4 ≤ 4n for all integers n ≥ 4.
Standard home-
work exercises.
6 marks in total.
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6 marks 4. 1672 = 8 × 209 = 23 × 11 × 19. So the divisors of 1672 are
2k1 × 11k2 × 19k3 for integers 0 ≤ k1 ≤ 3, 0 ≤ k2 ≤ 1, 0 ≤ k3 ≤ 1,
that is, 1, 2, 4, 8, 11, 22, 44, 88, 19, 38, 76, 152, 209, 418, 836, 1672.

Standard home-
work exercises.
6 marks in total.
3 marks 5. If m divides n then n = mn1 for some n1 ∈ Z. If n divides p

then p = np1 for some p1 ∈ Z.
2 marks If m | n and n | p, we have p = np1 = m(n1p1) and since n1p1 ∈ Z,

it follows that m | p.
Bookwork.
5 marks in total.

6.

1 0
0 1

∣∣∣748
231

R1 − 3R2

→ 1 −3
0 1

∣∣∣ 55
231

→
R2 − 4R1

1 −3
−4 13

∣∣∣55
11

R1 − 5R2

→ 21 −68
−4 13

∣∣∣ 0
11

4 marks

As a result of this:
1 mark (i) the g.c.d. d is 11;
1 mark (ii) from the first row of the last matrix, m1 = 68 and n1 = 21;
1 mark (iii) from the second row of either of the last two matrices a = −4

and b = 13;
2 marks (iv) The l.c.m. is 748× 21 = 231× 68 = 15708.
Standard home-
work exercise.
9 marks in total
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2 marks 7 f : X → Y is injective if ∀x1, x2 ∈ X, f(x1) = f(x2 ⇔ x1 = x2.
2 marks The image of f , Im(f) is {f(x) : x ∈ X}. f is a bijection if f is

injective and Im(f) = Y , that is, f is also surjective

4 marks y =
2x− 1

x+ 2
⇔ 2x − 1 = y(x + 2) = xy + 2y ⇔ x(2 − y) =

2y + 1 ⇔ x =
2y + 1

2− y
. It follows that f is injective. Also, we see

that x > 0 ⇔ 0 < y < 2. So Im(f) = (0, 2).
Standard theory
followed by stan-
dard homework
exercise.
8 marks in total

2 marks 8. (i)

√
3 + 2

5
is rational⇔

√
3 + 2

5
− 2

5
=

√
3

5
is rational,⇔

√
3

is rational. Since
√

3 is not rational, it follows that

√
3 + 2

5
is not

either.

3 marks (ii) Provided x 6= −1

3
,

x =
3x+ 5

3x+ 1
⇔ x(3x+ 1) = 3x+ 5 ⇔ 3x2 − 2x− 5 = 0

⇔ (3x− 5)(x+ 1) = 0.

So the positive solution to this is x =
5

3
, which is rational.

Standard home-
work exercises:
unseen element
in second one.
5 marks in total.
1 mark 9(i) uncountable;
1 mark (ii) countable;
1 mark c) countable.
Standard home-
work exercises
3 marks in total.
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Section B

Theory from lec-
tures
3 marks

10. ∼ is reflexive if
x ∼ x∀x ∈ X

∼ is symmetric if

x ∼ y ⇒ y ∼ x ∀ x, y ∈ X.

∼ is transitive if

(x ∼ y ∧ y ∼ z) ⇒ x ∼ z ∀ x, y, ∈ X.

Theory from lec-
tures
2 marks

The equivalence class [x] of x is the set {y ∈ X : y ∼ x}.

Standard home-
work exercise.
1 mark

(i) For this relation, 1 ∼ 2 and it is not true that 2 ∼ 1. So ∼ is
not symmetric, and is not an equivalence relation.

Standard home-
work exercise.
3 marks

(ii) For any nonzero integer m, m2 > 0 and so ∼ is reflexive on
Z\{0}. For any integers m and n, mn = nm and hence mn > 0⇔
nm > 0. So ∼ is symmetric If m, n and p are all non-zero integers
and m ∼ n and n ∼ p, and m, then m and n must both be positive
or both negative, since mn > 0. Similarly n and p must both be
positive or both negative. So m and p must both be positive or
both negative, and hence mp > 0 and m ∼ p. So ∼ is transitive
and ∼ is an equivalence relation

Harder exercise,
not previously
set.
3 marks

(iii) For any (x1, y1) ∈ R, x1 − x1 + 2(y1 − y1) = 0 + 0 = 0. So ∼ is
reflexive.
For any (x1, y1) and (x2, y2) ∈ R,

(x2 − x1) + 2(y2 − y1) = −((x1 − x2) + 2(y1 − y2)).

So x1 − x2 + 2(y1 − y2) = 0 ⇔ x2 − x1 + 2(y2 − y1) = 0, and ∼ is
symmetric.
For any (x1, y1), (x2, y2), (x3, y3) ∈ R

((x1−x2)+2(y1−y2))+(x2−x3)+2(y2−y3)) = (x1−x3)+2(y1−y3).

So

(x1−x2+2(y1−y2) = 0)∧(x2−x3+2(y2−y3) = 0) ⇒ (x1−x3)+2(y1−y3) = 0,

and ∼ is transitive.
3 marks Fix (x1, y1) ∈ R2 and write c − x1 + 2y1. Then (x, y) ∼ (x1, y1)

⇔ x + 2y = c, that is, if and only if (x, y) is on the straight line
x + 2y = c. The equivalence class of (a, 0) is the straight line
x+ 2y = a, or in parametric form {(a− 2t, t) : t ∈ R}.

15 marks in to-
tal.
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Standard home-
work exercise.
1 mark

10(i) . Base case: 12 = 1 = (1× (1+1)× (2+1))/6. So the formula
holds for n = 1

5 marks Inductive step Suppose that for some n ∈ Z+ we have
n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
. Then

n+1∑
k=1

k2 =
n∑
k=1

k2 + (n+ 1)2

=
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 = (n+ 1)

(
n(2n+ 1)

6
+ n+ 1

)
=

(n+ 1)(n(2n+ 1) + 6n+ 6

6
=

(n+ 1)(2n2 + 7n+ 6)

6

(n+ 1)(2n+ 3)(n+ 2)

6
=

(n+ 1)(n+ 1 + 1)(2(n+ 1) + 1

6
.

So

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
⇒

n+1∑
k=1

k2 =
(n+ 1)(n+ 1 + 1)(2(n+ 1) + 1)

6
.

1 mark So by induction
n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
holds for all n ∈ Z+.

Proved in lec-
tures.
1 mark

(ii) Base case 0 is divisible by 2. So the statement is true for n = 0.

4 marks Inductive step Suppose that exactly one of n, n − 1 is divisible by
2. Since n+ 1 = (n− 1) + 2 is divisible by 2 if and only if n− 1 is,
exactly one of n and n−1 is divisible by 2 if and only if exactly one
of n = (n + 1)− 1 and n + 1 is divisible by 2. So if the statement
is true for n, it is true for n+ 1.

1 mark So by induction, for all n ∈ N, exactly one of n and n−1 is divisible
by 2.

3 marks If n ∈ N is divisible by 2 then n = 2k for some k ∈ N. If n ∈ N and
n − 1 is divisible by 2 then n − 1 = 2k for some k ∈ Z+ ⊂ N and
n = 2k + 1 for some k ∈ N.

15 marks in to-
tal.
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Theory from lec-
tures.
2 marks

11(i) The inclusion/exclusion principle for two finite sets A and B
is that

|A ∪B| = |A|+ |B| − |A ∩B|.

Standard home-
work exercises.
2 marks

(ii) If V is the set of people who had vanilla and B is the set of
people who had another flavour then |B| = 164, |V | = 139 and
|V ∪B| = 215. The set of people who bought had both vanilla and
another flavour i is V ∩B and from (i) we have

|V ∩B| = |V |+ |B| − |V ∪B| = 139 + 164− 215 = 303− 215 = 88.

2 marks (iii) the set of people who had only vanilla is V \B. We have:

|V \B| = |V | − |V ∩B| = 139− 88 = 51.

1 mark (iv) The set of people not having vanilla is B \ V = (V ∪ B) \ V ,
so we have

|B \ V | = |V ∪B| − |V | = 215− 139 = 76.

2 marks (v) Let C be the set of people having chocolate. Since 31 of the 215
people had neither vanilla nor chocolate, 184 had either vanilla or
chocolate, that is |V ∪ C| = 184. We are also given |V ∩ C| = 28.
So from (i) with A = V and B = C, we have

184 = |V ∪C| = |V |+ |C| − |V ∩C| = |C|+ 139− 28 = |C|+ 111,

that is, |M | = 184−111 = 73, so 73 people had chocolate icecream.
2 marks (vi) The set of people who had chocolate and not vanilla is C \ V ,

and
|C \ V | = |C| − |V ∩ C| = 73− 28 = 45.

So 45 people had chocolate and not vanilla.
2 marks (vii) In (i) we take V ∩ C and V ∩ O to replace A and B, because

V ∩(C∪O) = (V ∩C)∪(V ∩O). Also (V ∩C)∩(V ∩O) = V ∩C∩O.
So this gives

|V ∩ (C ∪O)| = |V ∩ C|+ |V ∩O| − |V ∩ C ∩O|.

2 marks (viii) Given that |V ∩C| = 28, and |V ∩O| = 75, and |V ∩(C∪O)| =
88 from (ii), we have, from (vii)

88 = 28 + 75− |V ∩ C ∩O|

and hence |V ∩ C ∩ O| = 103 − 88 = 15, that is, 15 people had
vanilla and chocolate and something else.

15 marks in to-
tal.
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Theory from lec-
tures.
4 marks

12. A set A ⊂ Q is a Dedekind cut if:

a) A is nonempty, and bounded above;

b) x ∈ A ∧ y ∈ Q ∧ y < x⇒ y ∈ A;

c) A does not have a maximal element.

Similar to home-
work exercises.
1 mark (i) A = {x ∈ Q : x > −1/5} is not bounded above. So a) is violated

and A is not a Dedekind cut.
2 marks (ii) 1 ∈ A and 0 /∈ A (for example) So property b) is violated and

A is not a Dedekind cut.
4 marks (iii) If f(x) = x3 − 12x + 20, then f ′(x) = 3x2 − 12 has zeros at

±12, and as f ′′(x) = 6x, we see that −2 is a local maximum and
2 is a local minimum, and f is strictly increasing on (−∞,−2] and
on [2,∞), and strictly decreasing on [−2, 2]. Since f(2) = 4 > 0,
we see that f(x) ≥ 4 for all x ≥ −2. So A is bounded above by −2.
But f(−5) < 0, so −5 ∈ A and A is nonempty. Since f is strictly
increasing on (−∞,−2], if f(x) < 0 and y < x then f(y) < 0,
that is, property b) holds. If x ∈ A is a maximal element in A then
f(x) < 0. But then by continuity of f at x, there is a rational δ > 0
such that for any y ∈ Q with x ≤ y ≤ x+δ, we have f(y) < 0, that
is y ∈ A, contradicting x being a maximal element, that is property
c) holds for A. So A is a Dedekind cut.

4 marks (iv) Once again, if f(x) = x3 − 12x+ 1, then f ′(x) = 3x2 − 12 has
zeros at ±2, −2 is a local maximum, and f is strictly increasing on
(−∞,−2], with f(−2) = 17 > 0. By the definition of A, the set is
bounded above by −2, and since −2 ∈ A, it is non-empty. As in
(iii), property b) holds because f is strictly increasing on (−∞,−2]
and, again as in (iii), property c) holds because of continuity of f .
So A is a Dedekind cut.

15 marks in to-
tal.
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