MATH 105(R)

Examiner: Prof. S.M. Rees, Extension 44063.

Time allowed: Two and a half hours.

Full marks will be obtained by complete answers to all questions in Section A and three questions in Section B. The best 3 answers in Section B will be taken into account.

SECTION A

1. Write down each of the following statements in ordinary English (apart from equations or inequalities), and determine whether each one is true.
a) $x^{2}=4 \Rightarrow x \in \mathbb{Z}$.
b) $x \in \mathbb{Q} \wedge x<1 \Rightarrow \exists y \in \mathbb{Q}$ such that $x<y<1$
2. Negate each of the following statements, using logical symbols where possible.
a) $-1<x<0$
b) $x \in(0, \pi / 2) \Rightarrow \tan x>x$.
3. Write each of the sets below as either a single interval or a set containing just one element.
a) $((-3,-1) \cup(2,4]) \cap[0,3]$
b) $\quad(0,2) \cup((1,3) \cap[2,4))$.
c) $([-1,3] \cup[2,3) \cup(6,7]) \cap[3,5)$.
4. In each of the following, find the set of all $x \in \mathbb{R}$ satisfying the inequalities.
a) $3 x^{2}>2 x+1$
b) $\left|2+\frac{3}{x}\right| \leq 1$.
5. Prove by induction on n that $n^{3}<4^{n}$ for all $n \in \mathbb{N}$ with $n \geq 2$. Prove separately that this also holds for $n=0$ and $n=1$
6. Let $a=567$ and $b=387$. Using the Euclidean algorithm or otherwise, find:
(i) the g.c.d. d of a and b;
(ii) integers r and s such that $a=d r$ and $b=d s$;
(iii) integers m and n such that $d=m a+n b$;
(iv) the l.c.m. of a and b.
[10 marks]
7. Write down what it means for a function $f: X \rightarrow Y$ to be injective. Define the image of a function $f: X \rightarrow Y$, and define what it means for $f: X \rightarrow Y$ to be a bijection. Find the images of the following functions, and also determine whether the functions are injective:
a) $f:[0, \infty) \rightarrow[0, \infty)$ given by $f(x)=\frac{1}{1+x^{2}}$;
b) $f:[-\pi / 2, \pi / 2] \rightarrow \mathbb{R}$ given by $f(x)=2 \cos x$.
[10 marks]
8. State the inclusion/exclusion principle for two sets A_{1} and A_{2}.

15 travel companies offer package holidays in Florida or New York. 8 offer holidays in both, and 3 more offer holidays in New York than in Florida. Determine how many offer holidays in New York and how many offer holidays in Florida.

Hint: Write x for the number of companies offering holidays in Florida and write down an equation for x.
[6 marks]

SECTION B

9. An equivalence relation \sim on X (where $x \sim y$ means " x is equivalent to $y "$) is reflexive, symmetric and transitive. Define what each of these three terms means.
(i) Let $X=\mathbb{R}$ and define $x \sim y \Leftrightarrow x-y \geq 0$. Show that \sim is not an equivalence class on X
(ii) Now let $X=(-\infty, 0) \cup(0, \infty)$ and define $x \sim y \Leftrightarrow x / y>0$. Show that \sim is an equivalence relation on X. Determine the number of equivalence classes and write down a representative of each equivalence class.
(iii) Now let $X=\left\{(x, y) \in \mathbb{R}^{2}:(x, y) \neq(0,0)\right\}$ and define $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if and only if there exists $\lambda \in \mathbb{R}$ with $\lambda \neq 0$ such that $\left(x_{2}, y_{2}\right)=\lambda\left(x_{1}, y_{1}\right)$. Assuming that \sim is an equivalence relation (which is true) show that each element of $\{(1, y): y \in \mathbb{R}\}$ is in a different equivalence class. Show also that there is just one more equivalence class and give an element of it.
10. Let x_{n} be defined inductively by $x_{0}=1$ and

$$
x_{n+1}=\frac{1+x_{n}+x_{n}^{2}}{4}
$$

(i) Prove by induction that $\frac{1}{3}<x_{n} \leq 1$ for all $n \in \mathbb{N}$.
(ii) Show that

$$
x_{n+1}-x_{n+2}=\frac{\left(1+x_{n}+x_{n+1}\right)\left(x_{n}-x_{n+1}\right)}{4}
$$

and hence, or otherwise, show by induction that x_{n} is a decreasing sequence.
(iii) Prove by induction that

$$
\left|x_{n+1}-x_{n}\right| \leq\left(\frac{3}{4}\right)^{n} \frac{1}{4} .
$$

11. Define what it means for $A \subset \mathbb{Q}$ to be a Dedekind cut. Define also what it means for A Dedekind cut to be rational and write down the Dedekind cut which represents the rational number q.

Determine which of the following is a Dedekind cut (if any).
a) $A=\left\{x \in \mathbb{Q}:-2<x<\frac{1}{3}\right\}$;
b) $A=\left\{x \in \mathbb{Q}: \frac{1}{3}<x\right\}$;
c) $A=\left\{x \in \mathbb{Q}: x^{2}+2 x+3<0\right\}$.

Now let A be a Dedekind cut, and define

$$
B=\{-x: x \in \mathbb{Q} \wedge x \notin A\}
$$

Show from the definition of Dedekind cut for A, that B is bounded above and non-empty.
12. Define what it means for a set A to be finite, of cardinality n, and what it means for A to be countable

State which of the following sets A, B, C and D are countable and which are uncountable. Complete proofs are not required.
a) $A=\{2 n: n \in \mathbb{N}\}$;
b) $B=(0, \infty)$;
c) $C=\mathbb{Z}$;
d) $D=\mathbb{R}^{2}$.

Find a bijection $f: \mathbb{R} \rightarrow(0, \infty)$ and a bijection $g: \mathbb{N} \rightarrow \mathbb{Z}$. You should prove that g is a bijection, possibly by showing that it has an inverse function. Hint: One way to construct $g: \mathbb{N} \rightarrow \mathbb{Z}$ is to map the even natural numbers to the positive integers and the odd natural numbers to the strictly negative integers (for example).
[15 marks]

