

MATH 105(R)

EXAMINER: Prof. S.M. Rees, EXTENSION 44063.

TIME ALLOWED: Two and a half hours.

Full marks will be obtained by complete answers to all questions in Section A and three questions in Section B. The best 3 answers in Section B will be taken into account.

SECTION A

1. Write down each of the following statements in ordinary English (apart from equations or inequalities), and determine whether each one is true.

- a) $x^2 = 4 \Rightarrow x \in \mathbb{Z}.$
- b) $x \in \mathbb{Q} \land x < 1 \Rightarrow \exists y \in \mathbb{Q} \text{ such that } x < y < 1$ [6 marks]

2. Negate each of the following statements, using logical symbols where possible.

- a) -1 < x < 0
- b) $x \in (0, \pi/2) \Rightarrow \tan x > x.$

[4 marks]

3. Write each of the sets below as either a single interval or a set containing just one element.

- a) $((-3, -1) \cup (2, 4]) \cap [0, 3]$
- b) $(0,2) \cup ((1,3) \cap [2,4)).$
- c) $([-1,3] \cup [2,3) \cup (6,7]) \cap [3,5).$

[6 marks]

- 4. In each of the following, find the set of all $x \in \mathbb{R}$ satisfying the inequalities.
 - a) $3x^2 > 2x + 1$ b) $\left|2 + \frac{3}{x}\right| \le 1.$

[8 marks]

5. Prove by induction on n that $n^3 < 4^n$ for all $n \in \mathbb{N}$ with $n \ge 2$. Prove separately that this also holds for n = 0 and n = 1

[5 marks]

Paper Code MATH 105(R) Page 2 of 5

CONTINUED

6. Let a = 567 and b = 387. Using the Euclidean algorithm or otherwise, find:

- (i) the g.c.d. d of a and b;
- (ii) integers r and s such that a = dr and b = ds;
- (iii) integers m and n such that d = ma + nb;
- (iv) the l.c.m. of a and b.

[10 marks]

7. Write down what it means for a function $f : X \to Y$ to be injective. Define the image of a function $f : X \to Y$, and define what it means for $f : X \to Y$ to be a bijection. Find the images of the following functions, and also determine whether the functions are injective:

- a) $f: [0,\infty) \to [0,\infty)$ given by $f(x) = \frac{1}{1+x^2}$;
- b) $f: [-\pi/2, \pi/2] \to \mathbb{R}$ given by $f(x) = 2\cos x$.

[10 marks]

8. State the inclusion/exclusion principle for two sets A_1 and A_2 .

15 travel companies offer package holidays in Florida or New York. 8 offer holidays in both, and 3 more offer holidays in New York than in Florida. Determine how many offer holidays in New York and how many offer holidays in Florida.

Hint: Write x for the number of companies offering holidays in Florida and write down an equation for x.

[6 marks]

SECTION B

9. An equivalence relation \sim on X (where $x \sim y$ means "x is equivalent to y") is reflexive, symmetric and transitive. Define what each of these three terms means.

- (i) Let $X = \mathbb{R}$ and define $x \sim y \Leftrightarrow x y \ge 0$. Show that \sim is not an equivalence class on X
- (ii) Now let $X = (-\infty, 0) \cup (0, \infty)$ and define $x \sim y \Leftrightarrow x/y > 0$. Show that \sim is an equivalence relation on X. Determine the number of equivalence classes and write down a representative of each equivalence class.
- (iii) Now let $X = \{(x, y) \in \mathbb{R}^2 : (x, y) \neq (0, 0)\}$ and define $(x_1, y_1) \sim (x_2, y_2)$ if and only if there exists $\lambda \in \mathbb{R}$ with $\lambda \neq 0$ such that $(x_2, y_2) = \lambda(x_1, y_1)$. Assuming that \sim is an equivalence relation (which is true) show that each element of $\{(1, y) : y \in \mathbb{R}\}$ is in a different equivalence class. Show also that there is just one more equivalence class and give an element of it.

[15 marks]

10. Let x_n be defined inductively by $x_0 = 1$ and

$$x_{n+1} = \frac{1 + x_n + x_n^2}{4}$$

- (i) Prove by induction that $\frac{1}{3} < x_n \leq 1$ for all $n \in \mathbb{N}$.
- (ii) Show that

$$x_{n+1} - x_{n+2} = \frac{(1 + x_n + x_{n+1})(x_n - x_{n+1})}{4},$$

and hence, or otherwise, show by induction that x_n is a decreasing sequence.

(iii) Prove by induction that

$$|x_{n+1} - x_n| \le \left(\frac{3}{4}\right)^n \frac{1}{4}.$$

[15 marks]

Paper Code MATH 105(R)

Page 4 of 5

CONTINUED

11. Define what it means for $A \subset \mathbb{Q}$ to be a *Dedekind cut*. Define also what it means for A Dedekind cut to be *rational* and write down the Dedekind cut which represents the rational number q.

Determine which of the following is a Dedekind cut (if any).

- a) $A = \{x \in \mathbb{Q} : -2 < x < \frac{1}{3}\};$
- b) $A = \{x \in \mathbb{Q} : \frac{1}{3} < x\};$
- c) $A = \{x \in \mathbb{Q} : x^2 + 2x + 3 < 0\}.$

Now let A be a Dedekind cut, and define

$$B = \{-x : x \in \mathbb{Q} \land x \notin A\}$$

Show from the definition of Dedekind cut for A, that B is bounded above and non-empty.

[15 marks]

12. Define what it means for a set A to be *finite*, of cardinality n, and what it means for A to be *countable*

State which of the following sets A, B, C and D are countable and which are uncountable. Complete proofs are not required.

- a) $A = \{2n : n \in \mathbb{N}\};$
- b) $B = (0, \infty);$
- c) $C = \mathbb{Z};$
- d) $D = \mathbb{R}^2$.

Find a bijection $f : \mathbb{R} \to (0, \infty)$ and a bijection $g : \mathbb{N} \to \mathbb{Z}$. You should prove that g is a bijection, possibly by showing that it has an inverse function. *Hint*: One way to construct $g : \mathbb{N} \to \mathbb{Z}$ is to map the even natural numbers to the positive integers and the odd natural numbers to the strictly negative integers (for example).

[15 marks]