JANUARY 2014 EXAMINATIONS

Numbers and Sets

Time allowed: Two and a half hours.

INSTRUCTIONS TO CANDIDATES: Full marks will be obtained by complete answers to all questions in Section A and three questions in Section B. The best 3 answers in Section B will be taken into account.

SECTION A

1. Write down each of the following statements in ordinary English (apart from equations and inequalities), and state whether each one is true.
a) $2<3 \vee 5<4$.
b) $2>3 \wedge 4 \leq 5$.
c) $x \in \mathbb{Q} \Rightarrow x \in \mathbb{Z}$.
d) $\exists x \in \mathbb{R}, x^{2}+2 x+1<0$.
2. Write down the negatives of the statements in 1 , without using the negation symbol \rightharpoondown.
[6 marks]
3. Let x_{n} be defined for integers $n \geq 0$ by

$$
x_{0}=\frac{3}{2} \text { and } x_{n+1}=\frac{2 x_{n}}{3}+\frac{1}{3} .
$$

Prove by induction that $1<x_{n}<2$ for all integers $n \geq 0$.
4. Define what it means for an integer m to divide an integer n. Prove that if m, n and p are integers, and m divides n and n divides p, then m divides p.
[6 marks]
5. Each of the following sets can be written as a single interval. Write down the interval in each case.
a) $(0,2] \cup[1,3] \cup[2,4]$.
b) $((0,2] \cap[1,3]) \cup[2,4]$.
c) $((0,2] \cap[1,3]) \backslash[2,4]$.
6. Let $m=1014$ and $n=455$. Let d be the greatest common divisor of m and n. Using the Euclidean algorithm or otherwise:
(i) compute d;
(ii) find integers m_{1} and n_{1} such that $m=d m_{1}$ and $n=d n_{1}$;
(iii) find integers a and b such that $d=m a+n b$;
(iv) find the l.c.m. of m and n.

7.

Define the image of a function $f: X \rightarrow Y$. Find the image $\operatorname{Im}(f)$ of $f: X \rightarrow$ Y where $f(x)=2 x+1$ and:
a) $X=\mathbb{R}$ and $Y=\mathbb{R}$;
b) $X=[0,1]$ and $Y=\mathbb{R}$.

Show that if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are functions then $\operatorname{Im}(g \circ f) \subset \operatorname{Im}(g)$.
8. Define what it means for a real number x to be algebraic. Show that the number $x=1+\sqrt{2}$ is algebraic.
9. Define what it means for a function $f: X \rightarrow Y$ to be injective. Define what it means for a set A to be countable. State without reasons which of the following sets is countable and which is uncountable.
a) $(-\infty, 0]$;
b) \mathbb{Q};
c) A set A such that there exists an injective map $f: A \rightarrow \mathbb{Z}$.

SECTION B

10.

(i) An equivalence relation \sim on X (where $x \sim y$ means " x is equivalent to y ") is reflexive, symmetric and transitive. Define what each of these three terms means. Also, give the definition of the equivalence class $[x]$ of an element x of X.
(ii) Determine for which of the following \sim is an equivalence relation on X.
a) $X=\mathbb{Z}$ and $m \sim n$ if and only if m divides n.
b) $X=\mathbb{Z}$ and $m \sim n$ if and only if 5 divides $m-n$.
(iii) Now let X be the set of all polynomials with real coefficients, that is, of the form

$$
f(x)=\sum_{i=0}^{n} a_{i} x^{i}
$$

for $n \in \mathbb{N}$ and $a_{i} \in \mathbb{R}$, for $0 \leq i \leq n$. Show that \sim is an equivalence relation, where $f(x) \sim g(x)$ if $f(0)=g(0)$. Also, show that the equivalence class of the polynomial $x^{2}-x$ is all polynomials of the form $x g(x)$, where $g(x)$ varies over all polynomials with real coefficents.
[15 marks]
11.
a) Prove by induction that $n<2^{n}-1$ for all integers $n \geq 2$.
b) Let p_{n} denote the n 'th smallest positive prime, so that $p_{1}=2, p_{2}=3$ and so on. Show that for all $n \in \mathbb{Z}_{+}$,

$$
p_{n+1} \leq 1+\prod_{i=1}^{n} p_{i}
$$

The proof of this is not by induction. Now prove by induction that for all $n \in \mathbb{Z}_{+}$,

$$
\prod_{i=1}^{n} p_{i}<2^{2^{n}}-1
$$

12. Define what it means for a function $f: X \rightarrow Y$ to be injective (also called one-to-one), and what it means for $f: X \rightarrow Y$ to be surjective (also called onto) and what it means for $f: X \rightarrow Y$ to be a bijection. Prove that if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both injective, then $g \circ f: X \rightarrow Z$ is also injective.

State the Schröder-Bernstein Theorem. Using this theorem or otherwise, show that there is a bijection between $(0,1]$ and $[0,1]$.

Assuming that there is a bijection from \mathbb{Z}_{+}^{2} to \mathbb{Z}_{+}, show that if A_{n} is a countable set for each $n \in \mathbb{Z}_{+}$, then $\cup_{n=1}^{\infty} A_{n}$ is countable. You may assume that the sets A_{n} are disjoint, and all non-empty.
[15 marks]
13. Define what it means for $A \subset \mathbb{Q}$ to be a Dedekind cut.

Determine which (if any) of the following is a Dedekind cut, checking whether or not the properties needed for a set to be a Dedekind cut do hold.
a) $A=\{x \in \mathbb{Q}: x>5\}$.
b) $A=\{x \in \mathbb{Q}: x<5\}$.
c) $A=\left\{x: x \in \mathbb{Q}, x^{2}<5 \vee x<0\right\}$.

Hint: you may assume that if $2 \leq a \leq 3$ and $0<\varepsilon<1$ then $(a+\varepsilon)^{2}<a^{2}+7 \varepsilon$.
d) $A=\left\{x \in \mathbb{Q}: x^{2}<5 \vee x>0\right\}$.

