MATH 105

Examiner: Prof. S.M. Rees, Extension 44063.

Time allowed: Two and a half hours.

Full marks will be obtained by complete answers to all questions in Section A and three questions in Section B. The best 3 answers in Section B will be taken into account.

SECTION A

1. Write down each of the following statements in ordinary English (apart from equations and and inequalities), and determine whether each one is true.
a) $x \in \mathbb{R} \Rightarrow x^{2}+2 x+1 \geq 0$.
b) $\exists n \in \mathbb{Z}$ such that $n \leq p \forall p \in \mathbb{Z}$.
[6 marks]
2. Negate each of the following statements, using logical symbols where possible.
a) $x<0 \vee x \geq 2$.
b) $\sin x<x \forall x \in(0,1)$.
[4 marks]
3. Identify which of the following sets is equal to the empty set. Write each of the others as either a single interval - if this is possible - or a union of two intervals.
a) $[-3,7] \cap(-1,8) \cap[-4,6]$
b) $([-4,1] \cup(3,8]) \cap[2,3]$.
c) $\quad([-5,1] \cup(3,7)) \cap([-3,0] \cup(2,6))$.
[6 marks]
4. In each of the following, find the set of all $x \in \mathbb{R}$ satisfying the inequalities. The set might be empty.
a) $x^{2}+x>2$.
b) $x^{2}+x+2<0$.
[6 marks]
5. Let x_{n} be defined inductively for $n \in \mathbb{N}$ by $x_{0}=1$ and $x_{n+1}=3 x_{n}-4$. Prove by induction that $x_{n}=2-3^{n}$ for all $n \in \mathbb{N}$.
6. Let $a=572$ and $b=385$. Using the Euclidean algorithm or otherwise, find:
(i) the g.c.d. d of a and b;
(ii) integers r and s such that $a=d r$ and $b=d s$;
(iii) integers m and n such that $d=m a+n b$;
(iv) the l.c.m. of a and b.
7. Write down what it means for a function $f: X \rightarrow Y$ to be injective. Define the image of a function $f: X \rightarrow Y$, and define what it means for $f: X \rightarrow Y$ to be a bijection. Find the images of the following functions, and also determine whether the functions are injective:
a) $f:(0, \infty) \rightarrow \mathbb{R}$ given by $f(x)=x^{-2}$;
b) $f:[-\pi / 2, \pi / 2] \rightarrow \mathbb{R}$ given by $f(x)=\sin ^{2} x$.
[10 marks]
8. State the inclusion/exclusion principle for two sets A_{1} and A_{2}.

10 web retailers are selling Series 1 or Series 2 Dr Who DVD's. Series 1 is sold by 9 of them and Series 2 by 8 .
(i) Determine how many of the retailers are selling both Series 1 and Series 2, and how many sell just Series 1, or just Series 2.
(ii) Now suppose that 7 of these 10 retailers also sell Series 3, and that 6 retailers sell all three series. Determine how many sell exactly two of the three series.
Hint: Only the inclusion/exclusion principle for A_{1} and A_{2} is needed.

SECTION B

9. An equivalence relation \sim on X (where $x \sim y$ means " x is equivalent to $y "$) is reflexive, symmetric and transitive. Define what each of these three terms means.
(i) Let $X=\mathbb{Z}$ and let \sim be the relation defined on X by $m \sim n \Leftrightarrow m-n$ is even. Show that \sim is an equivalence relation on X, determine the number of equivalence classes, and write down a representative of each equivalence class.
(ii) Let X be the set of all polynomials $f(x)$ of degree at most one with integer coefficients, that is

$$
X=\left\{a_{0}+a_{1} x: a_{0}, a_{1} \in \mathbb{Z}\right\}
$$

Define $f(x) \sim g(x) \Leftrightarrow f(x)-g(x)=c_{0}+c_{1} x$ for even integers c_{0} and c_{1}. Show that \sim is an equivalence relation. Determine the number of equivalence classes of \sim, and write down a representative of each equivalence class.
[15 marks]
10. Let x_{n} be defined inductively for $n \in \mathbb{N}$ by

$$
x_{0}=1, \quad x_{n+1}=3-\frac{7}{3+x_{n}} .
$$

(i) Prove by induction that $1 \leq x_{n}<2$ for all $n \in \mathbb{N}$.
(ii) Show that

$$
x_{n+2}-x_{n+1}=\frac{7\left(x_{n+1}-x_{n}\right)}{\left(3+x_{n}\right)\left(3+x_{n+1}\right)},
$$

and hence, or otherwise, show by induction that x_{n} is an increasing sequence.
(iii) Prove by induction that, for all $n \in \mathbb{N}$,

$$
\left|x_{n+1}-x_{n}\right| \leq\left(\frac{7}{16}\right)^{n} \frac{1}{4}
$$

11. Define what it means for $A \subset \mathbb{Q}$ to be a Dedekind cut.

Determine which (if any) of the following is a Dedekind cut.
a) $A=\{x \in \mathbb{Q}: x \leq 6.5\}$;
b) $A=\{x \in \mathbb{Q}: 7<x\}$;
c) $A=\left\{x \in \mathbb{Q}: x^{2}-3 x+1<0\right\}$.

Now let A be a Dedekind cut, and define

$$
2 A=\{2 x: x \in A\}, \quad-A=\{-x: x \in A\} .
$$

Show that $2 A$ is a Dedekind cut and that $-A$ is not one.
[15 marks]
12. Define what it means for a set A to be finite, of cardinality n, and what it means for A to be countable.

State which of the following sets A, B, C and D are countable and which are uncountable. No proofs are required.
a) $A=[0,1]$.
b) $B=[0,1)$.
c) $C=\mathbb{Z}$.
d) $D=\mathbb{N}^{2}$.

Show that there is an injective map $g: A \rightarrow B$ and an injective map $h: B \rightarrow A$. State the Schröder-Bernstein Theorem, and explain how it applies for A and B as above.

By considering $\left\{(m, n) \in \mathbb{N}^{2}: m+n=p\right\}$ or otherwise, write \mathbb{N}^{2} as a countable union of finite sets.
[15 marks]

