MATH105: Solutions to Practice Problems 9

5. Suppose for contradiction that $x=\frac{p}{q}$ for $p, q \in \mathbb{Z}_{+}$. We can assume that p and q are the smallest possible positive integers for which this is true, and therefore that the g.c.d of p and q is 1 . Then $p x=q$ and $p^{3} x^{3}=q^{3}$, that is $5 p^{3}=q^{3}$. Since 2 is prime we deduce that 2 is one of the prime factors of q and hence $q=5 q_{1}$ for some $q_{1} \in \mathbb{Z}_{+}$. So $5 p^{3}=q^{3}=5^{3} q_{1}^{3}$ and $p^{3}=5^{2} q_{1}^{3}$. So then 5 must be a prime factor of p and 5 divides both p and q the g.c.d. of p and q is not 1 , giving a contradiction. So x cannot be rational after all.
6. We have $x_{1}=\frac{7}{4}$ and $x_{1}^{2}-3=\frac{1}{16}$. So we put

$$
x_{2}=x_{1}-\frac{1}{16 \times 2 x_{1}}=x_{1}-\frac{4}{32 \times 7}=x_{1}-\frac{1}{56}=\frac{97}{56} .
$$

Then

$$
x_{2}^{2}-3=\frac{9409}{3136}-3=\frac{1}{3136}
$$

So we put

$$
\begin{gathered}
x_{3}=x_{2}-\frac{1}{3136 \times 2 x_{2}}=\frac{97}{56}-\frac{28}{3136 \times 97}=\frac{97}{56}-\frac{1}{112 \times 97} \\
=\frac{97^{2} \times 2-1}{112 \times 97}=\frac{18817}{112 \times 97} . \\
x_{3}^{2}-3=\frac{354079489}{118026496}-\frac{354079488}{118026496}=\frac{1}{118026496} .
\end{gathered}
$$

7.

a) $-1 \leq-\frac{1}{n^{3}}<0$ for all $n \in \mathbb{Z}_{+}$. So -1 is the mimimal element. There is no maximal element, because $-\frac{1}{(n+1)^{3}}>-\frac{1}{n^{3}}$ for all $n \in \mathbb{Z}_{+}$, so $\frac{1}{n^{3}}$ cannot be minimal for any $n \in \mathbb{Z}_{+}$.
b) $\left\{x \in \mathbb{R}: x^{2} \leq 5\right\}=[-\sqrt{5}, \sqrt{5}]=\{x \in \mathbb{R}:-\sqrt{5} \leq x \leq \sqrt{5}\}$. So $\sqrt{5}$ is the maximal element and $-\sqrt{5}$ is the minimal element.
c) $\left\{x \in \mathbb{R}: x^{2}<3\right\}=(-\sqrt{3}, \sqrt{3})$. This set has no maximal or minimal element because the numbers $\pm \sqrt{3}$ are not in the set, but yet for any real number x with $-\sqrt{3}<x<\sqrt{3}$, there are real numbers y and z with $-\sqrt{3}<y<x<z<\sqrt{3}$. For example one can take $y=(x-\sqrt{3}) / 2$ and $z=(x+\sqrt{3}) / 2$.
d) $A=\left\{x \in \mathbb{Q}: x^{2} \leq 3\right\}=\mathbb{Q} \cap[-\sqrt{3}, \sqrt{3}]$ Since $\pm \sqrt{3}$ are not rational, Acan also be written as $\mathbb{Q} \cap(-\sqrt{3}, \sqrt{3})$, and again has no maximal or minimal elements because although $-\sqrt{3}<x<\sqrt{3}$ for all $x \in A, \pm \sqrt{3} \notin A$ and yet for any $x \in A$ there are y and $z \in A$ with $y<x<z$. For example (although this much detail is not required) we can take $y=x-\left(3-x^{2}\right) / 4$ and $z=x+\left(3-x^{2}\right) / 4$.
e) $A=\mathbb{R}$ because $2-x^{2} \leq 3 \Leftrightarrow x^{2} \geq-1$, and this is true for all $x \in \mathbb{R}$. So there is no maximum element and no minimum element.
8. If $x \geq 1$ and $0<\varepsilon<1$ then

$$
(x+\varepsilon)^{2}=x^{2}+2 x \varepsilon+\varepsilon^{2}<x^{2}+3 x \varepsilon
$$

If in addition $x^{2}<56$ and $\varepsilon \leq\left(5-x^{2}\right) / 2$ then $x^{2}+3 x \varepsilon \leq x^{2}+5-x^{2}=5$ and hence $(x+\varepsilon)^{2}<5$.
a) $A=\{x \in \mathbb{Q}: x<3\}$ is a Dedekind cut because for $y \in Q, y \geq 2 \Rightarrow y \notin A$ (which shows $A \neq \emptyset$ and $A \neq \mathbb{Q})$ and $y<x \Rightarrow y<2 \Rightarrow y \in A$ and for $x \in A$, there is no maximal element: if $x<2$ then $x<\frac{x+2}{2}<2$, and $\frac{x+2}{2} \in \mathbb{Q}$.
b) In this case $A=\{x \in Q: x \geq-2\}$ which is not a Dedekind cut because it is not bounded above.
c) $A=\left\{x \in Q: x^{2}<3 \vee x<1\right\}$.

- $3^{2}=9>3$, and $x>3 \Rightarrow x^{2}>9>5$. So A is bounded above.
- If $x \in A$ and $y<x$ then either $y \leq 0<1$, in which case $y \in A$, or $0 \leq y<x$, in which case $y^{2}<5$ and again $y \in A$.
- If $x \in A$ with $x^{2}<5$, either $x<1 \in A$ or $x \geq 1$ and we choose $\varepsilon \in \mathbb{Q}$ with $\left.0<\varepsilon<5-x^{2}\right) / 3$. Then $x<x+\varepsilon$ and $x+\varepsilon \in A$. Hence x is not maximal in A for any $x \in A$ and there is no maximal element.

So A is a Dedekind cut.
d) $A=\left\{x \in \mathbb{Q}: x^{2}<5 \vee x>1\right\}$ is not a Dedekind cut because (for example) $-3 \notin A$ but $0 \in A$
e) Again A is not a Dedekind cut because $-3 \notin A$ but $0 \in A$.
9. Base case If $A \subset \mathbb{R}$ has one element a then a is both a maximal and a minimal element of A.

Inductive step Now suppose inductively that any set with n elements has both a maximal element and a minimal element. Let A be a set with $n+1$ elements. Then there is a bijection $f:\left\{k \in \mathbb{Z}_{+}\right.$: $k \leq n+1\} \rightarrow A$. Let $B=\{f(k): k \leq n\}$. Then by the inductive hypothesis B has a maximal element b_{1} and a minimal element b_{2}, where $b_{1}=f(i)$ for some $i \leq n$ and $b_{2}=f(j)$ for some $j \leq n$. Then $A=B \cup\{f(n+1)$. There are three possibilities.

- $f(n+1)<b_{2}$. Then $f(n+1)$ is the minimum element of A and $b_{1}=f(i)$ is the maximum element.
- $b_{1}<f(n+1)$. Then $b_{2}=f(j)$ is the minimum element of A and $f(n+1)$ is the maximum element.
- $n \geq 2$ and $b_{2}<f(n+1)<b_{1}$. Then $b_{2}=f(j)$ is the minimum element of A and b_{1} is the maximum element.

So by induction a set with n elements has both a maximal and a minimal element for all $n \in \mathbb{Z}_{+}$.

