MATH105 Sheet 8: Solutions to Practice Problems

5.

a) (i) $x-x=0 \in \mathbb{Z}$, so $x \sim x$ for all $x \in \mathbb{R}$ and \sim is reflexive.
(ii) $x-y \in \mathbb{Z} \Leftrightarrow y-x \in \mathbb{Z}$). So, for all $x, y \in \mathbb{R}, x \sim y \Leftrightarrow y \sim x$, and \sim is symmetric
(iii)

$$
x-y \in \mathbb{Z} \wedge y-z \in \mathbb{Z} \Rightarrow x-z=(x-y)+(y-z)=x-z \in \mathbb{Z}
$$

So, for all $x, y, z \in \mathbb{Z}$,

$$
x \sim y \wedge y \sim z \Rightarrow x \sim z
$$

and \sim is transitive.
Hence \sim is an equivalence relation.
b) If $x=1$ and $y=0$ then $x-y=1 \in \mathbb{N}$ and hence $1 \sim 0$. But $0-1=-1 \notin \mathbb{N}$ and hence it is not true that $0 \sim 1$. So \sim is not symmetric, and is not an equivalence relation on \mathbb{R}.
c) If $m=2$ and $n=1$ then $m / n=2 \in \mathbb{Z}_{+}$and so $2 \sim 1$. But $n / m=1 / 2 \notin \mathbb{Z}_{+}$and so it is not true that $1 \sim 2$. So \sim is not symmetric, and is not an equivalence relation on \mathbb{Z}_{+}.
6.
(i) For any $m, n \in \mathbb{Z}, m-m=0$ and $n-n=0$, and 0 is even. So $(m, n) \sim(m, n)$ and \sim is reflexive.
(ii) For any $m_{1}, n_{1}, m_{2}, n_{2} \in \mathbb{Z}$,

$$
\begin{gathered}
\left(m_{1}, n_{1}\right) \sim\left(m_{2}, n_{2}\right) \Rightarrow\left(m_{1}-m_{2} \text { even } \wedge n_{1}-n_{2} \text { even }\right) \Rightarrow\left(m_{2}-m_{1} \text { even } \wedge n_{2}-n_{1} \text { even }\right) \\
\Rightarrow\left(m_{2}, n_{2}\right) \sim\left(m_{1}, n_{1}\right)
\end{gathered}
$$

So \sim is symmetric
(iii) For any $m_{1}, n_{1}, m_{2}, n_{2}, m_{3}, n_{3} \in \mathbb{Z}$,

$$
\begin{aligned}
&\left(\left(m_{1}, n_{1}\right) \sim\left(m_{2}, n_{2}\right)\right.\left.\wedge\left(m_{2}, n_{2}\right) \sim\left(m_{3}, n_{3}\right)\right) \Rightarrow\left(m_{1}-m_{2} \text { even } \wedge n_{1}-n_{2} \text { even } \wedge m_{2}-m_{3} \text { even } \wedge n_{2}-n_{3} \text { even }\right) \\
& \Rightarrow\left(m_{2}-m_{1}+m_{3}-m_{2} \text { even } \wedge n_{2}-n_{1}+n_{3}-n_{2} \text { even }\right) \\
& \Rightarrow\left(m_{3}-m_{1} \text { even } \wedge n_{3}-n_{1} \text { even }\right) \Rightarrow\left(m_{1}, n_{1}\right) \sim\left(m_{3}, n_{3}\right) .
\end{aligned}
$$

So \sim is transitive.
So \sim is an equivalence relation. If we consider the four vectors

$$
(0,0), \quad(1,0), \quad(0,1), \quad(1,1)
$$

then these are in four different equivalence classes. Denoting the equivalence class of a vector (m, n) by $[(m, n)]$, we have

$$
\begin{gathered}
{[(0,0)]=\{(2 k, 2 \ell): k, \ell \in \mathbb{Z}\}} \\
{[(1,0)]=\{(2 k+1,2 \ell): k, \ell \in \mathbb{Z}\}} \\
{[(0,1)]=\{(2 k, 2 \ell+1): k, \ell \in \mathbb{Z}\}} \\
{[(1,1)]=\{(2 k+1,2 \ell+1): k, \ell \in \mathbb{Z}\} .}
\end{gathered}
$$

7.

a) We have $15=3 \times 5$ and $35=5 \times 7$ and 11 is prime. So the l.c.m. n of 11,15 and 35 is $11 \times 3 \times 5 \times 7=$ $11 \times 105=1155$.
b) The l.c.m. of 15 and 35 is $15 \times 7=3 \times 35=105$. So we have

$$
\frac{b_{1}}{15}+\frac{c_{1}}{35}=\frac{7 b_{1}+3 c_{1}}{105} .
$$

One solution to $7 b_{1}+3 c_{1}=1$ is $b_{1}=1$ and $c_{1}=-2$. Then

$$
\frac{a}{11}+\frac{e}{105}=\frac{105 a+11 e}{1155}=\frac{1}{1155} \Leftrightarrow 105+11 e=1 .
$$

To solve this using the Euclidean algorithm,

$$
\begin{array}{cc|cccc|ccc|ccc}
1 & 0 & 105 & R_{1}-9 R_{2} & 1 & -9 \\
0 & 1 & 11 & \rightarrow & 0 & \rightarrow & 1 & -9 & 6 & R_{1}-R_{2} & 2 & -19 \\
11 & R_{2}-R_{1} & -1 & 10 & 1 \\
5 & \rightarrow & -1 & 10
\end{array}{ }_{5}^{l}
$$

So we can take $a=2$ and $e=-19$ which gives

$$
a=2, \quad b=-19, \quad c=38 .
$$

Thus

$$
\frac{2}{11}-\frac{19}{15}+\frac{38}{35}=\frac{1}{1155}
$$

Of course there are many other solutions.
8.
a) Suppose for contradiction that there are $p \in \mathbb{Z}$ and $q \in \mathbb{Z}_{+}$such that

$$
\frac{1}{7}+\frac{5}{4} \sqrt{3}=\frac{p}{q}
$$

Then

$$
\sqrt{3}=\frac{4 p}{5 q}-\frac{4}{35}=\frac{28 p-20 q}{35 q} \in \mathbb{Q}
$$

which is a contradiction.
b) Suppose for contradiction that $x \in \mathbb{Q}$ with $a+b \sqrt{3}=x$. Since $b \neq 0, b^{-1} \in \mathbb{Q}$ exists and $\sqrt{3}=$ $(x-a) \cdot b^{-1} \in \mathbb{Q}$ which is again a contradiction.
c) If $3^{1 / 6}=x \in \mathbb{Q}$ then $\sqrt{3}=x^{3} \in \mathbb{Q}$, which is a contradiction.
$9.3^{0}+(-1)^{0}=1+1=2=3^{1}+(-1)^{1}$, the formula $x_{k}=3^{k}+(-1)^{k}$ holds for $k=0$ and $k=1$.
Now suppose the formula holds for $k \leq n$. Then

$$
\begin{aligned}
x_{n+1}=2 x_{n}+3 x_{n-1}=2\left(3^{n}+(-1)^{n}\right) & +3\left(3^{n-1}+(-1)^{n-1}\right)=2 \cdot 3^{n}+3^{n}+2 \cdot(-1)^{n}-3 \cdot(-1)^{n} \\
& =3^{n+1}+(-1)^{n+1}
\end{aligned}
$$

So if the formula holds for $k \leq n$ then it also holds for $k=n+1$, and hence for $k=n+1$.
So by induction $x_{n}=3^{n}+(-1)^{n}$ for all n.
As noted in the question, we need two bases cases, and the most natural ones to take are $n=0$ and $n=1$. Also, as noted in the question, we need to assume at least the two cases $k=n-1$ and $k=n$ in order to get the case $k=n+1$. In the solution above I have chosen to make the inductive hypothesis "Assume true for $k \leq n$ ", to deduce the case for $k=n+1$, which means that "True for $k \leq n$ implies "True for $k \leq n+1$ ".

