7.

- a) $[1,3) \cap (2,4] = \{x \in \mathbb{R} : 1 \le x < 3 \land 2 < x \le 4\} = (2,3).$
- b) $[1,3) \cup (2,4] = \{x \in \mathbb{R} : 1 \le x < 3 \lor 2 < x \le 4\} = [1,4].$
- c) $([2,5] \cup [1,4]) \setminus (0,3) = \{x \in \mathbb{R} : (2 \le x \le 5 \lor 1 \le x \le 4) \land \neg (0 < x < 3) = \{x \in \mathbb{R} : (1 \le x \le 5) \land (x \le 0 \lor x \ge 3\} = [3,5].$
- d) $[2,5] \cup ([1,4] \setminus (3,4) = \{x \in \mathbb{R} : (2 \le x \le 5 \lor 1 \le x \le 4) \land \neg (3 < x < 4) = \{x \in \mathbb{R} : (1 \le x \le 5) \land (x \le 3 \lor x \ge 4\} = [1,3] \cup [4,5].$
- 8.
- a) $x^4 = (x^2)^2 \ge 0$ for all $x \in \mathbb{R}$, so the image of f is contained in $[0, \infty)$. Conversely, if $y \ge 0$ then $y^{1/4} = \sqrt{\sqrt{y}}$ exists and $(y^{1/4})^4 = y$. So the image of f is $[0, \infty)$.
- b) $f(x) = y \Leftrightarrow x 2 = y \Leftrightarrow x = y + 2$. So $\text{Im}(f) = \mathbb{R}$.
- c) Since $e^x > 0$ for all $x \in \mathbb{R}$, the image of f is contained in $(0, \infty)$. For any y > 0,

$$e^x = y \Leftrightarrow x = \ln y.$$

So $\operatorname{Im}(f) = (0, \infty)$.

d)

$$y = 1 + \frac{1}{x} \Leftrightarrow x = \frac{1}{y - 1}$$

Since $\frac{1}{y-1}$ is defined for $y \neq 1$, the image of f is $(0,1) \cup (1,\infty) = \{y \in (0,\infty : y \neq 1\}.$

9.

- a) This function f is not injective because, for example, $1^4 = (-1)^4$. It is not surjective because the image $[0, \infty)$ is not equal to the codomain \mathbb{R} .
- b) This function f is injective and surjective because $f(x) = y \Leftrightarrow x = y + 2$. So for each y there is at most one x with f(x) = y (injective) and at least one x with f(x) = y (surjective). Therefore it is also a bijection, since it is both injective and surjective.
- c) Since $f(x) = y \Leftrightarrow x = \ln y$, this function f is injective. Since the image $(0, \infty)$ is not equal to the codomain \mathbb{R} , the function is not surjective. Therefore, it is not a bijection.

d)

e) Since $f(x) = y \Leftrightarrow x = 1/(y-1)$, this function f is injective. Since the image $(0,1) \cup (1,\infty)$ is not equal to the codomain $(0,\infty)$, the function is not surjective. Therefore, it is not a bijection.

10.

- a) For any integer $m \ 3 \mid m \Leftrightarrow m = 3n$ for some integer m. So for any integer $p, p = 3n 1 \Leftrightarrow 3 \mid p + 1$. So a conditional definition of this set is $\{p \in \mathbb{Z} : 3 \mid p + 1\}$.
- b) $0 \leq \sin^2 x \leq 1$ for all $x \in \mathbb{R}$. Also if $-1 \leq y \leq 1$ then there is $x \in \mathbb{R}$ with $\sin x = y$. If $z \in [0, 1]$ and $y = \sqrt{z}$, then $z = y^2$ and if $\sin x = y$, we have $\sin^2 x = z$. So a conditional definition of this set is $\{y \in \mathbb{R} : 0 \leq y \leq 1\}$. A shorthand for this is just [0, 1], the closed interval between 0 and 1.

c)

$$\frac{x}{x+2} = y \Leftrightarrow x = xy + 2y \Leftrightarrow x = \frac{2y}{1-y}$$

which is defined for all $y \neq 1$, and is positive $\Leftrightarrow 0 < y < 1$. So

$$\left\{\frac{x}{x+2} : x \in (0,\infty)\right\} = \{y \in \mathbb{R} : 0 < y < 1\}$$

So $\{y \in \mathbb{R} : 0 < y < 1\}$ is a conditional definition of this set.

11.

a)
$$\{n \in \mathbb{Z}_+ : 100 \mid n\} = \{100k : k \in \mathbb{Z}_+\}.$$

b) $\{x \in \mathbb{R} : x < 0\} = \{1 + x^2 : x \in \mathbb{R}\}.$

12.

a) For all x and $y \in \mathbb{R}$, since both f and g are increasing,

$$x \le y \Rightarrow g(x) \le g(y) \Rightarrow f(g(x)) \le f(g(y)).$$

So $f \circ g$ is increasing

b) For all x and $y \in \mathbb{R}$, since f is strictly increasing and g is strictly decreasing,

$$x < y \Rightarrow g(x) > g(y) \Rightarrow f(g(x)) > f(g(y)).$$

So $f \circ g$ is strictly decreasing. Similarly

$$x < y \Rightarrow f(x) < f(y) \Rightarrow g(f(x)) > g(f(y)).$$

So $g \circ f$ is strictly decreasing.

c) f(x) = g(x) = x for all $x \in \mathbb{R}$. Clearly f = g is strictly increasing but $f \cdot g(x) = x^2$ is neither increasing nor decreasing.