MATH105 Solutions to Practice Problems 6

7.

a) $[1,3) \cap(2,4]=\{x \in \mathbb{R}: 1 \leq x<3 \wedge 2<x \leq 4\}=(2,3)$.
b) $[1,3) \cup(2,4]=\{x \in \mathbb{R}: 1 \leq x<3 \vee 2<x \leq 4\}=[1,4]$.
c) $([2,5] \cup[1,4]) \backslash(0,3)=\{x \in \mathbb{R}:(2 \leq x \leq 5 \vee 1 \leq x \leq 4) \wedge \rightharpoondown(0<x<3)=\{x \in \mathbb{R}:(1 \leq x \leq$ 5) $\wedge(x \leq 0 \vee x \geq 3\}=[3,5]$.
d) $[2,5] \cup([1,4] \backslash(3,4)=\{x \in \mathbb{R}:(2 \leq x \leq 5 \vee 1 \leq x \leq 4) \wedge \rightharpoondown(3<x<4)=\{x \in \mathbb{R}:(1 \leq x \leq$ 5) $\wedge(x \leq 3 \vee x \geq 4\}=[1,3] \cup[4,5]$.
8.
a) $x^{4}=\left(x^{2}\right)^{2} \geq 0$ for all $x \in \mathbb{R}$, so the image of f is contained in $[0, \infty)$. Conversely, if $y \geq 0$ then $y^{1 / 4}=\sqrt{\sqrt{y}}$ exists and $\left(y^{1 / 4}\right)^{4}=y$. So the image of f is $[0, \infty)$.
b) $f(x)=y \Leftrightarrow x-2=y \Leftrightarrow x=y+2$. So $\operatorname{Im}(f)=\mathbb{R}$.
c) Since $e^{x}>0$ for all $x \in \mathbb{R}$, the image of f is contained in $(0, \infty)$. For any $y>0$,

$$
e^{x}=y \Leftrightarrow x=\ln y .
$$

So $\operatorname{Im}(f)=(0, \infty)$.
d)

$$
y=1+\frac{1}{x} \Leftrightarrow x=\frac{1}{y-1}
$$

Since $\frac{1}{y-1}$ is defined for $y \neq 1$, the image of f is $(0,1) \cup(1, \infty)=\{y \in(0, \infty: y \neq 1\}$.
9.
a) This function f is not injective because, for example, $1^{4}=(-1)^{4}$. It is not surjective because the image $[0, \infty)$ is not equal to the codomain \mathbb{R}.
b) This function f is injective and surjective because $f(x)=y \Leftrightarrow x=y+2$. So for each y there is at most one x with $f(x)=y$ (injective) and at least one x with $f(x)=y$ (surjective). Therefore it is also a bijection, since it is both injective and surjective.
c) Since $f(x)=y \Leftrightarrow x=\ln y$, this function f is injective. Since the image $(0, \infty)$ is not equal to the codomain \mathbb{R}, the function is not surjective. Therefore, it is not a bijection.
d)
e) Since $f(x)=y \Leftrightarrow x=1 /(y-1)$, this function f is injective. Since the image $(0,1) \cup(1, \infty)$ is not equal to the codomain $(0, \infty)$, the function is not surjective. Therefore, it is not a bijection.
10.
a) For any integer $m 3 \mid m \Leftrightarrow m=3 n$ for some integer m. So for any integer $p, p=3 n-1 \Leftrightarrow 3 \mid$ $p+1$. So a conditional definition of this set is $\{p \in \mathbb{Z}: 3 \mid p+1\}$.
b) $0 \leq \sin ^{2} x \leq 1$ for all $x \in \mathbb{R}$. Also if $-1 \leq y \leq 1$ then there is $x \in \mathbb{R}$ with $\sin x=y$. If $z \in[0,1]$ and $y=\sqrt{z}$, then $z=y^{2}$ and if $\sin x=y$, we have $\sin ^{2} x=z$. So a conditional definition of this set is $\{y \in \mathbb{R}: 0 \leq y \leq 1\}$. A shorthand for this is just $[0,1]$, the closed interval between 0 and 1 .
c)

$$
\frac{x}{x+2}=y \Leftrightarrow x=x y+2 y \Leftrightarrow x=\frac{2 y}{1-y}
$$

which is defined for all $y \neq 1$, and is positive $\Leftrightarrow 0<y<1$. So

$$
\left\{\frac{x}{x+2}: x \in(0, \infty)\right\}=\{y \in \mathbb{R}: 0<y<1\}
$$

So $\{y \in \mathbb{R}: 0<y<1\}$ is a conditional definition of this set.
11.
a) $\left\{n \in \mathbb{Z}_{+}: 100 \mid n\right\}=\left\{100 k: k \in \mathbb{Z}_{+}\right\}$.
b) $\{x \in \mathbb{R}: x<0\}=\left\{1+x^{2}: x \in \mathbb{R}\right\}$.
12.
a) For all x and $y \in \mathbb{R}$, since both f and g are increasing,

$$
x \leq y \Rightarrow g(x) \leq g(y) \Rightarrow f(g(x)) \leq f(g(y))
$$

So $f \circ g$ is increasing
b) For all x and $y \in \mathbb{R}$, since f is strictly increasing and g is strictly decreasing,

$$
x<y \Rightarrow g(x)>g(y) \Rightarrow f(g(x))>f(g(y)) .
$$

So $f \circ g$ is strictly decreasing. Similarly

$$
x<y \Rightarrow f(x)<f(y) \Rightarrow g(f(x))>g(f(y))
$$

So $g \circ f$ is strictly decreasing.
c) $f(x)=g(x)=x$ for all $x \in \mathbb{R}$. Clearly $f=g$ is strictly increasing but $f \cdot g(x)=x^{2}$ is neither increasing nor decreasing.

