8. Base case $3^{3}+4^{3}=27+64=91<125=5^{3}$. So $3^{n}+4^{n}<5^{n}$ is true for $n=3$.

Inductive step Now assume that $n \geq 3$ and $3^{n}+4^{n}<5^{n}$ and consider $3^{n+1}+4^{n+1}$. We have

$$
3^{n+1}+4^{n+1}<4 \cdot\left(3^{n}+4^{n}\right)<4 \cdot 5^{n}<5^{n+1}
$$

So

$$
3^{n}+4^{n}<5^{n} \Rightarrow 3^{n+1}+4^{n+1}<5^{n+1}
$$

Finishing By induction $3^{n}+4^{n}<5^{n}$ for all integers $n \geq 3$.
9.

$$
\begin{aligned}
& \begin{array}{cc|ccc|cccc|}
1 & 0 & 450 & R_{1}-R_{2} & 1 & -1 & 72 & \rightarrow & 1 \\
0 & 1 & 378 & \rightarrow & 0 & 1 & 378 & -1 & 72 \\
& & R_{2}-5 R_{1} & -5 & 6 & 18
\end{array} \\
& \begin{array}{ccc|c}
R_{1}-4 R_{2} & 21 & -25 & 0 \\
\rightarrow & -5 & 6 & 18
\end{array} \\
& \begin{array}{lll|l}
\rightarrow & -5 & 6 & 18
\end{array}
\end{aligned}
$$

So the g.c.d. is $d=18$, from the second row of the last matrix. Also from this second row we have

$$
-5 \times 434+6 \times 364=14
$$

so $a=-5$ and $b=6$ The first row of the last matrix gives $21 \times 450=25 \times 378$. This number is 9450 , and is the l.c.m..
10. We fix $n \in \mathbb{Z}_{+}$. Since $k \mid n!=\prod_{j=1}^{n} j$ for $2 \leq k \leq n$, it is also true that $k \mid n!+k$ for $2 \leq k \leq n$. Since k is divisible by at least one prime for any integer $k \geq 2$, and $n!+k>k$, it follows that $n!+k$ is not prime for any $2 \leq k \leq n$. There are $n-1$ such numbers and hence they must all be contained in the same prime gap, which must have length $\geq n$.

