MATH105 Solutions to Practice Problems

1. a) $m=168, n=63$.

$$
\begin{array}{cc|cccc|cccc|cccc}
1 & 0 & 168 & R_{1}-2 R_{1} & 1 & -2 & 42 & \rightarrow & 1 & -2 & 42 & R_{1}-2 R_{2} & 3 & -8 \\
0 & 1 & 63 & \rightarrow & 0 & 1 & 0 & 0 \\
63 & R_{2}-R_{1} & -1 & 3 & 21 & \rightarrow & -1 & 3 & 21
\end{array}
$$

So (i) $d=21$, (ii) $a=-1$ and $b=3$, that is, $-1 \times 168+3 \times 63=7$ and (iii) $m_{1}=8$ and $n_{1}=3$, that is, $168=8 \times 21$ and $63=3 \times 21$.

Using prime factorisation, $168=8 \times 21=2^{3} \times 3 \times 7$, while $63=3^{2} \times 7$. So the gcd is $3 \times 7=21$ and the lcm is $2^{3} \times 3^{2} \times 7=504$.
b) $m=234, n=416$.

$$
\left.\begin{array}{cc|cccc|cccc|cccc}
1 & 0 & 234 & \rightarrow & 1 & 0 & 234 & R_{1}-R_{2} & 2 & -1 & 52 & \rightarrow & 2 & -1 \\
0 & 1 & 416 & R_{2}-R_{1} & -1 & 1 & 182 & \rightarrow & -1 & 1 & 182 & R_{2}-3 R_{1} & -7 & 4
\end{array} \right\rvert\, \begin{gathered}
56 \\
\\
R_{1}-2 R_{2} \\
\\
\\
\rightarrow
\end{gathered}
$$

So (i) $d=26$, (ii) $a=-7$ and $b=4$, that is, $-7 \times 234+4 \times 416=26$ and (iii) $m_{1}=9$ and $n_{1}=16$, that is, $234=9 \times 26$ and $416=16 \times 26$.

Using prime factorisation, $234=2 \times 117=2 \times 9 \times 13=2 \times 3^{2} \times 13$, and $416=4 \times 104=$ $4 \times 8 \times 13=2^{5} \times 13$. So the gcd is $2 \times 13=26$ and the lcm is $2^{5} \times 3^{2} \times 13=3774$.
c) $m=543, n=1251$.

$$
\begin{aligned}
& \begin{array}{cc|ccc|cccc|cccc|cc|}
1 & 0 & 543 & \rightarrow & 1 & 0 & 543 & R_{1}-3 R_{2} & 7 & -3 & 48 & \rightarrow & 7 & -3 & 48 \\
0 & 1 & 1251 & R_{2}-2 R_{1} & -2 & 1 & 165 & \rightarrow & -2 & 1 & 165 & R_{2}-3 R_{1} & -23 & 10 & 21
\end{array} \\
& \begin{array}{cccc|ccc|cccc|c}
R_{1}-2 R_{2} & 53 & -23 & 6 & R_{1}-3 R_{2} & 53 & -23 & 6 & R_{1}-2 R_{2} & 417 & -181 & 0 \\
\rightarrow & -23 & 10 & 21 & \rightarrow & -182 & 79 & 3 & \rightarrow & -182 & 79 & 3
\end{array}
\end{aligned}
$$

So (i) $d=3$, (ii) $a=-182$ and $b=79$, that is, $-182 \times 543+79 \times 1251=4$ and (iii) $m_{1}=181$ and $n_{1}=417$, that is, $543=181 \times 3$ and $1251=417 \times 3$.

Using prime factorisation, $543=3 \times 181$, and 181 is prime. We can check this from the list of the first 1000 primes, or, alternatively, by checking that it is not divisible by $2,3,5,7,11$ and 13 . Also, $1251=9 \times 139=3^{2} \times 139$, and 139 is prime. So 3 is the gcd, and $3^{2} \times 139 \times 181=226431$ is the lcm .
2. $x^{4}-1=\left(x^{2}-1\right)\left(x^{2}+1\right)=(x-1)(x+1)\left(x^{2}+1\right)$. Putting $x=10$, we have

$$
10^{4}-1=\left(10^{2}+1\right) \times(10-1) \times(10+1)=101 \times 9 \times 11=101 \times 3^{2} \times 11
$$

The last expression in the line above is the prime factorisation of $10^{4}-1=9999$.
3. We start by checking Binet's formula for $n=1$ and $n=2$:

$$
\begin{gathered}
u_{1}=1=\frac{(1+\sqrt{5})-(1-\sqrt{5})}{2 \sqrt{5}}=\frac{2 \sqrt{5}}{2 \sqrt{5}}=1 \\
u_{2}=\frac{\left((1+\sqrt{5})^{2}-(1-\sqrt{5})^{2}\right.}{4 \sqrt{5}}=\frac{1+5+2 \sqrt{5}-1-5+2 \sqrt{5}}{4 \sqrt{5}}=\frac{4 \sqrt{5}}{4 \sqrt{5}}=1
\end{gathered}
$$

Suppose the formula works for u_{k} for $1 \leq k \leq n$ where $n \geq 2$. Then

$$
u_{n+1}=u_{n-1}+u_{n}=\frac{(1+\sqrt{5})^{n-1}-(1-\sqrt{5})^{n-1}}{2^{n-1} \sqrt{5}}+\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}}
$$

$$
\begin{gathered}
=\frac{(1+\sqrt{5})^{n-1}(2+1+\sqrt{5})}{2^{n} \sqrt{5}}-\frac{(1-\sqrt{5})^{n-1}(2+1-\sqrt{5}}{2^{n} \sqrt{5}} \\
=\frac{(1+\sqrt{5})^{n-1}(6+2 \sqrt{5})-(1-\sqrt{5})^{n-1}(6-2 \sqrt{5})}{2^{n+1} \sqrt{5}}=\frac{(1+\sqrt{5})^{n+1}-(1-\sqrt{5})^{n+1}}{2^{n+1} \sqrt{5}}
\end{gathered}
$$

because $6+2 \sqrt{5}=(1+\sqrt{5})^{2}$ and $6-2 \sqrt{5}=(1-\sqrt{5})^{2}$
So if the formula holds for $1 \leq k \leq n$, then it holds for $1 \leq k \leq n+1$. So by induction, Binet's formula holds for all $n \in \mathbb{N}$.

Now we compute u_{n} and $(1+\sqrt{5})^{n} 2^{-n} / \sqrt{5}$ for $n \leq 12$.

n	u_{n}	$(1+\sqrt{5})^{n} 2^{-n} / \sqrt{5}$	n	u_{n}	$(1+\sqrt{5})^{n} 2^{-n} / \sqrt{5}$
1	1	0.72360679775	7	13	12.98459713475
2	1	1.1708239325	8	21	21.0095149426
3	2	1.894427191	9	34	33.99411662902
4	3	3.06524758425	10	55	55.00363612328
5	5	4.95967477525	11	89	88.99775275231
6	8	8.0249223595	12	144	144.00138887561

The two quantities u_{n} and $(1+\sqrt{5})^{n} 2^{-n} / \sqrt{5}$ are getting closer. This is because $(1-\sqrt{5})^{n} 2^{-n} / \sqrt{5}$ is getting closer to 0 . in fact for $n=12$ this is 0.001388875 ..

