
MATH105 Feedback and Solutions 8

1.

a) (i) m−m = 0, so 10|m−m and m ∼ m for all m ∈ Z and ∼ is reflexive.

Note that 10|0 means 10 divides 0, which is true. More than one person decided it meant 0 divides 10, which is

of course false. Such people naturally then decided that the relation was not reflexive, but 10 divides 0 is true and

therefore the relation is reflexive.

(ii) m− n = 10k ⇔ n−m = 10(−k), and k ∈ Z ⇔ −k ∈ Z. So 10|m− n ⇔ 10|n−m and m ∼ n ⇔ n ∼ m
and ∼ is symmetric

(iii)
m− n = 10k1 ∧ n− p = 10k2 ⇒ m− p = 10(k1 + k2),

and
k1 ∈ Z ∧ k2 ∈ Z⇒ k1 + k2 ∈ Z

So
m ∼ n ∧ n ∼ p⇒ m ∼ p

and ∼ is transitive

Hence ∼ is an equivalence relation. The equivalence classes are the sets

{k + 10m : m ∈ Z}

for k ∈ Z, with 0 ≤ k ≤ 9. Every integer is in exactly one of these sets. So there are exactly 10 equivalence
classes.

The equivalence classes are sets, so should be written down as sets, that is, enclosed in curly brackets. It is OK to write
the sets informally, such as {· · · − 10, 0, 10, 20 · · · }. The definitions given above are constructive. Conditional definitions
of the same sets are given by

{n ∈ Z : 10|(n− k)}

for k ∈ Z, with 0 ≤ k ≤ 9.

b) If m = 2 then 2× 2 6= 1 and so it is not true that 2 ∼ 2. So ∼ is not reflexive, that is, it is not true that m ∼ m
for all m ∈ Z. and ∼ is not an equivalence relation.

Reflexivity has to hold for all integers. It is true that 1 ∼ 1 and −1 ∼ −1, but that is not enough. Since this relation is not

reflexive, it cannot be an equivalence relation, and there is no need to check symmetry and transitivity as well.(Actually

the relation is both symmetric and transitive, as some people worked out, but since it is not reflexive it cannot be an

equivalence relation.)

c) (i) m−m = 0 = 0× k2 for any integer k, so m ∼ m for all m ∈ Z and ∼ is reflexive.

(ii) m− n = rk2 ⇔ n−m = (−r) · k2, So m ∼ n ⇔ n ∼ m and ∼ is symmetric

(iii) If m = 0 and n = 4 and p = 13, then 22|0 − 4 and 32|4 − 13. So 0 ∼ 4 and 4 ∼ 13. But 13 is prime and
there is no integer k ≥ 2 such that k2|13. So ∼ is not transitive.

So ∼ is not an equivalence relation.

Despite the italics in the question, most people did not take in that the integer k in the definition of m ∼ n depends on m

and n. If you spot straight away that this relation is not transitive, then there is no need to check reflexivity and symmetry

as well.

2.

a) (i) |A| = |A| for all A ⊂ Y . So ∼ is reflexive

(ii) For A, B ⊂ Y , |A| = |B| ⇔ |B| = |A|. So ∼ is symmetric

(iii) If A, B and C ⊂ Y , then
|A| = |B| ∧ |B| = |C| ⇒ |A| = |C|.

So ∼ is transitive

Hence ∼ is an equivalence relation.



b) If Y = {1, 2, 3, 4} then there are 5 equivalence classes:

{∅},
{{1}, {2}, {3}, {4}},
{{1, 2}, {2, 3}, {3, 4}, {1, 3}, {2, 4}, {1, 4}, }.
{{1, 2, 3, }, {1, 3, 4}.{1, 2, 4}, {2, 3, 4}},
{{1, 2, 3, 4}}.

The elements of X are subsets of Y and the equivalence classes of ∼ are subsets of X, which makes them sets of subsets

of Y — hence the nested curly brackets in the solution given above. I accepted solutions where people simply wrote the

elements of the equivalence classes on 5 different lines The notation 2Y for the set of subsets of Y confused many people.

Quite a few people did write down all the subsets of {1, 2, 3, 4}, and that was worth doing, but does not answer the question

asked. It is a standard notation for the set of subsets of a set Y . One reason for the notation is that, if Y is finite then the

number of subsets of Y is 2|Y |, where (as usual) |Y | is the number of elements of Y . So in this example, since |Y | = 4,

the number of subsets of Y is 24 = 16.

c) If |Y | = n then the number of equivalence classes of ∼ is n+ 1, because two subsets of Y are equivalent ⇔ they
have the same number r of elements for some r, with 0 ≤ r ≤ n. The number of subsets of Y with r elements is(

n
r

)
=

n!

r! · (n− r)!
.

So these are the sizes of the equivalence classes, for 0 ≤ r ≤ n.

Some solutions mentioned a connection with Pascal’s triangle which is useful information but you need to say a bit more

to make the answer complete. The k’th entry of the n’th row (starting from k = 0) is the number of k-element subsets of

a set with n elements.

3.

a) The least n is the l.c.m. of 4 = 22 and 15 = 3× 5 and 35 = 5× 7. So n = 22 × 3× 5× 7 = 420.

b) There is more than one correct answer: in fact there are infinitely many.

Since n = 420 = 12× 35 = 15× 28 = 35× 12, we have n1 = 35 and n2 = 28. So the g.c.d. d of n1 and n2 is 7,
and

a

4
+

b

15
+

c

35
=

105a + 28b + 12c

420
=

7(35a + 4b) + 12c

420
.

So it suffices to find a1 and b1 such that 15a1 + 4b1 = 1 and e such that 7e+ 12c = 1 and and then take a = a1e
and b = b1e. In fact we then have

a1e

4
+

b1e

15
=

e(15a1 + 4b1)

60
=

e

60

and hence
a1e

12
+

b1e

15
+

c

35
=

e

60
+

c

35
=

7e + 12c

420
=

1

420
.

One correct answer By inspection we can take a1 = −1 and b1 = 4 and e = −5 and c = 3. Then a = 5 and
b = −20. So

1

420
=

5

4
+
−20

15
+

3

35
=

5

4
− 4

3
+

3

35
= − 1

12
+

3

35
=

1

420

4.

a) Suppose for contradiction that there are p ∈ Z and q ∈ Z+ such that

1

3
+

2

5

√
2 =

p

q

Then √
2 =

5p

2q
− 5

6
=

15p− 5q

6q
∈ Q

which is a contradiction.

b) Suppose for contradiction that x ∈ Q with a+ b
√

2 = x. Since b 6= 0, b−1 ∈ Q exists and
√

2 = (x− a) · b−1 ∈ Q
which is again a contradiction.

c) If 21/4 = x ∈ Q then
√

2 = x2 ∈ Q, which is a contradiction.



Most solutions that I saw did use proof by contradiction and I think this is the clearest way to do it.

Solutions to Practice Problems

5.

a) (i) x− x = 0 ∈ Z, so x ∼ x for all x ∈ R and ∼ is reflexive.

(ii) x− y ∈ Z ⇔ y − x ∈ Z). So, for all x, y ∈ R, x ∼ y ⇔ y ∼ x, and ∼ is symmetric

(iii)
x− y ∈ Z ∧ y − z ∈ Z⇒ x− z = (x− y) + (y − z) = x− z ∈ Z.

So, for all x, y, z ∈ Z,
x ∼ y ∧ y ∼ z ⇒ x ∼ z,

and ∼ is transitive.

Hence ∼ is an equivalence relation.

b) If x = 1 and y = 0 then x − y = 1 ∈ N and hence 1 ∼ 0. But 0 − 1 = −1 /∈ N and hence it is not true that
0 ∼ 1. So ∼ is not symmetric, and is not an equivalence relation on R.

c) If m = 2 and n = 1 then m/n = 2 ∈ Z+ and so 2 ∼ 1. But n/m = 1/2 /∈ Z+ and so it is not true that 1 ∼ 2.
So ∼ is not symmetric, and is not an equivalence relation on Z+.

6.

(i) For any m, n ∈ Z, m−m = 0 and n− n = 0, and 0 is even. So (m,n) ∼ (m,n) and ∼ is reflexive.

(ii) For any m1, n1, m2, n2 ∈ Z,

(m1, n1) ∼ (m2, n2) ⇒ (m1 −m2 even ∧ n1 − n2 even ) ⇒ (m2 −m1 even ∧ n2 − n1 even )

⇒ (m2, n2) ∼ (m1, n1).

So ∼ is symmetric

(iii) For any m1, n1, m2, n2, m3, n3 ∈ Z,

((m1, n1) ∼ (m2, n2)∧(m2, n2) ∼ (m3, n3)) ⇒ (m1−m2 even ∧n1−n2 even ∧m2−m3 even ∧n2−n3even)

⇒ (m2 −m1 + m3 −m2 even ∧ n2 − n1 + n3 − n2 even )

⇒ (m3 −m1 even ∧ n3 − n1 even ) ⇒ (m1, n1) ∼ (m3, n3).

So ∼ is transitive.

So ∼ is an equivalence relation. If we consider the four vectors

(0, 0), (1, 0), (0, 1), (1, 1),

then these are in four different equivalence classes. Denoting the equivalence class of a vector (m,n) by [(m,n)],
we have

[(0, 0)] = {(2k, 2`) : k, ` ∈ Z},

[(1, 0)] = {(2k + 1, 2`) : k, ` ∈ Z},

[(0, 1)] = {(2k, 2` + 1) : k, ` ∈ Z},

[(1, 1)] = {(2k + 1, 2` + 1) : k, ` ∈ Z}.



7.

a) We have 15 = 3 × 5 and 35 = 5 × 7 and 11 is prime. So the l.c.m. n of 11, 15 and 35 is 11 × 3 × 5 × 7 =
11× 105 = 1155.

b) The l.c.m. of 15 and 35 is 15× 7 = 3× 35 = 105. So we have

b1
15

+
c1
35

=
7b1 + 3c1

105
.

One solution to 7b1 + 3c1 = 1 is b1 = 1 and c1 = −2. Then

a

11
+

e

105
=

105a + 11e

1155
=

1

1155
⇔ 105 + 11e = 1.

To solve this using the Euclidean algorithm,

1 0
0 1

∣∣∣105
11

R1 − 9R2

→
1 −9
0 1

∣∣∣ 6
11

→
R2 −R1

1 −9
−1 10

∣∣∣ 6
5
R1 −R2

→
2 −19
−1 10

∣∣∣1
5

So we can take a = 2 and e = −19 which gives

a = 2, b = −19, c = 38.

Thus
2

11
− 19

15
+

38

35
=

1

1155
.

Of course there are many other solutions.

8.

a) Suppose for contradiction that there are p ∈ Z and q ∈ Z+ such that

1

7
+

5

4

√
3 =

p

q

Then √
3 =

4p

5q
− 4

35
=

28p− 20q

35q
∈ Q

which is a contradiction.

b) Suppose for contradiction that x ∈ Q with a+ b
√

3 = x. Since b 6= 0, b−1 ∈ Q exists and
√

3 = (x− a) · b−1 ∈ Q
which is again a contradiction.

c) If 31/6 = x ∈ Q then
√

3 = x3 ∈ Q, which is a contradiction.

9. 30 + (−1)0 = 1 + 1 = 2 = 31 + (−1)1, the formula xk = 3k + (−1)k holds for k = 0 and k = 1.
Now suppose the formula holds for k ≤ n. Then

xn+1 = 2xn + 3xn−1 = 2(3n + (−1)n) + 3(3n−1 + (−1)n−1) = 2 · 3n + 3n + 2 · (−1)n − 3 · (−1)n

= 3n+1 + (−1)n+1

So if the formula holds for k ≤ n then it also holds for k = n + 1, and hence for k = n + 1.
So by induction xn = 3n + (−1)n for all n.
As noted in the question, we need two bases cases, and the most natural ones to take are n = 0 and n = 1. Also, as noted

in the question, we need to assume at least the two cases k = n − 1 and k = n in order to get the case k = n + 1. In the

solution above I have chosen to make the inductive hypothesis “Assume true for k ≤ n”, to deduce the case for k = n + 1,

which means that “True for k ≤ n implies “True for k ≤ n + 1”.


