
MATH105 Feedback and Solutions 5

1. Base case 22 + 32 = 4 + 9 = 13 < 16 = 42. So 2n + 3n < 4n is true for n = 2.
Inductive step Now assume that n ≥ 2 and 2n + 3n < 4n and consider 2n+1 + 3n+1. We have

2n+1 + 3n+1 < 3 · (2n + 3n) < 3 · 4n < 4n+1

So
2n + 3n < 4n ⇒ 2n+1 + 3n+1 < 4n+1

Finishing By induction 2n + 3n < 4n for all integers n ≥ 2.
In quite a lot of homeworks that I saw, either the inductive step or the “Finishing off” was not written properly.

The inductive step is to prove “if true for n then true for n + 1”. A common omission was to leave out “if true
for n”, or sometimes to only put it later on. It should come at the start. Note also that the “finishing off” is “so
true for all n ≥ 2” (or a variation of that if the base case is different). The finishing off statement refers to all n
not all n + 1.

Some people are writing n = k and n = k + 1. That is fine. But if you are going to do this, and prove that a

statement for n = k implies it for n = k + 1, please do not switch to n + 1

2.
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So the g.c.d. is d = 14, from the second row of the last matrix. Also from this second row we have

−5× 434 + 6× 364 = 14

so a = −5 and b = 6 The first row of the last matrix gives 26× 434 = 31× 364. This number is 11, 284
and is the l.c.m..

Using prime factorisation, we have 364 = 4 × 91 = 22 × 7 × 13 and 434 = 2 × 217 = 2 × 7 × 31. So
the g.c.d. is 14 and the l.c.m. is 22 × 7× 13× 31 = 364× 31 = 11, 284.

3. p5 = 11, p6 = 13 and p7 = 17. So

1. (p5, p6) ∩ Z={ 12} ;

2. (p6, p7) ∩ Z = {14, 15, 16}.

Note the use of curly brackets. I have written them in on some scripts. They should be used if you are writing

in terms of sets, as is don in the solution above {a} means “the set containing a”.

4. If n ∈ (1327, 1361) ∩ Z then n = k` for some k, ` ∈ Z+ with 2 ≤ k ≤ ` ∈ Z+. Then k2 ≤ l` = n ≤
1360 < 1369 = 372 and so k < 37. Then k1 ≤ k < 37 for any prime divisor k1 of k, and k1 is also a
divisor of n. Since k1 is prime, k1 ≤ 31.

Some sort of explanation was required for full marks: something more than just computing 372 and 312.

5. The only positive divisors of 1327 are 1 and 1327, because 1327 is prime. But 1327 is not a divisor of
n, since 1 ≤ n < 1327. So the only possible positive divisor of both n and 1327 is 1, and this is the g.c.d..

a) Now using the Euclidean algorithm to find a and b ∈ Z such that 1327a + 17b = 1:
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which gives a = 1 and b = −78, that is 1× 1327− 78× 17 = 1.
b) Using the Euclidean algorithm to find a and b ∈ Z such that 1327a + 31b = 1:
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which gives a = 5 and b = −214, that is 5× 1327− 214× 31 = 1.

6. Using the first rows of the second matrices in a) and b) for each of the first two parts:

a) 1327 = 78× 17 + 1;

b) 1327 = 42× 31 + 25;

c) 1327 = 102× 13 + 1;

d) 1327 = 69× 19 + 16;

e) 1327 = 57× 23 + 16;

f) 1327 = 45× 29 + 22.

7. From question 5, we can see which numbers in the prime gap are divisible by each of 13, 17, 19, 23,
29 and 31. In fact we have

1330 = 70×19 = 2×5×7×19, 1333 = 43×31, 1334 = 58×23 = 2×23×29, 1339 = 103×13, 1343 = 79×17,

1349 = 71× 19, 1352 = 104× 13 = 23 × 132, 1357 = 59× 23, 1360 = 80× 17 = 24 × 5× 17.

This was not part of the question but just for the record here are the prime factorisations of all the
numbers in the gap. Numbers divisible by 11 are easy to spot:

1331 = 113, 1342 = 11× 122 = 2× 11× 61, 1353 = 11× 123 = 3× 11× 41

We have seen that 1330 is divisible by 7. So the others are

1337 = 7× 191, 1344 = 26 × 3× 7, 1351 = 7× 193, 1358 = 2× 7× 97.

Of the numbers divisible by 5, we have already dealt with 1330 and 1360. For the others, we have

1335 = 5× 267 = 3× 5× 89, 1340 = 22 × 5× 67, 1345 = 5× 269, 1350 = 52 × 54 = 2× 33 × 52,

1355 = 5× 271.

The numbers in the gap which are divisible by 3 start with 1329 = 3 × 443 and end with 1359 =
3 × 453 = 32 × 151. The prime numbers in this range are 443 and 449. The others must already
have been factorised, apart from those divisible by 2. The numbers divisible by 2 in the gap start with
1328 = 2 × 664 = 24 × 83 and end with 1360 = 2 × 680 = 24 × 85 = 24 × 5 × 17. The prime numbers
between 664 and 680 are 673 and 677, where 673× 2 = 1346 and 677× 2 = 1354.

So the complete list of prime factorisations (for the record) is

1328 = 24× 83, 1329 = 3× 443, 1330 = 2× 5× 7× 19, 1331 = 113, 1332 = 22× 3× 37, 1333 = 31× 43,

1334 = 2×23×29, 1335 = 3×5×89, 1336 = 22×3×113, 1337 = 7×191, 1338 = 2×3×223, 1339 = 13×103,

1340 = 22 × 5× 67, 1341 = 32 × 149, 1342 = 2× 11× 61, 1343 = 17× 79, 1344 = 26 × 3× 7,

1345 = 5× 269, 1346 = 2× 673, 1347 = 3× 449, 1348 = 22 × 337, 1349 = 19× 71, 1350 = 2× 33 × 52,

1351 = 7× 193, 1352 = 23× 167, 1353 = 3× 11× 41, 1354 = 2× 677, 1355 = 5× 271, 1356 = 23× 167,

1357 = 23× 59, 1358 = 2× 7× 97, 1359 = 32 × 151, 1360 = 24 × 5× 17.



Solutions to Practice Problems

8. Base case 33 + 43 = 27 + 64 = 91 < 125 = 53. So 3n + 4n < 5n is true for n = 3.
Inductive step Now assume that n ≥ 3 and 3n + 4n < 5n and consider 3n+1 + 4n+1. We have

3n+1 + 4n+1 < 4 · (3n + 4n) < 4 · 5n < 5n+1

So
3n + 4n < 5n ⇒ 3n+1 + 4n+1 < 5n+1

Finishing By induction 3n + 4n < 5n for all integers n ≥ 3.
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So the g.c.d. is d = 18, from the second row of the last matrix. Also from this second row we have

−5× 434 + 6× 364 = 14

so a = −5 and b = 6 The first row of the last matrix gives 21 × 450 = 25 × 378. This number is 9450,
and is the l.c.m..

10. We fix n ∈ Z+. Since k | n! =
∏n

j=1 j for 2 ≤ k ≤ n, it is also true that k | n! + k for 2 ≤ k ≤ n.
Since k is divisible by at least one prime for any integer k ≥ 2, and n! + k > k, it follows that n! + k is
not prime for any 2 ≤ k ≤ n. There are n− 1 such numbers and hence they must all be contained in the
same prime gap, which must have length ≥ n.


