MATH105 Feedback and Solutions 3

1. Base case We have $a_{0}=3=2^{1}+1$. So $a_{n}=2^{n+1}+1$ is true for $n=0$.

Inductive step Now suppose that $a_{n}=2^{n+1}+1$ for some $n \in \mathbb{N}$. Then

$$
a_{n+1}=2 a_{n}-1=2\left(2^{n+1}+1\right)-1=2^{n+2}+2-1=2^{n+2}+1
$$

So

$$
a_{n}=2^{n+1}+1 \Rightarrow a_{n+1}=2^{n+2}+1
$$

So by induction $a_{n}=2^{n+1}+1$ for all $n \in \mathbb{N}$.
The inductive step is to assume a statement for n and prove a statement for $n+1$. In this question - which was probably found the easiest by most people - there was also an inductive definition of a_{n+1} in terms of a_{n}, which was given, and which was $a_{n+1}=2 a_{n}-1$. Most answers that I saw understand what was to be proved and what was given. The inductive definition $a_{n+1}=2 a_{n}-1$ was given and the formula $a_{n}=2^{n+1}+1$ was to be proved, by induction, for all $n \in \mathbb{N}$. Most answers I saw did prove the formula, or made a good attempt to prove it, but there were a few answers which assumed the formula and then deduced the inductive definition from it.

Some people are writing the inductive step as " true for $n=k$, implies for $n=k+1$...hence true for all $n \geq 0$ (or 1 or 7) by induction." This is fine, but is optional. I am not promoting it strongly because there are more advanced induction questions in which induction is on two different integers, for example. Also, do be careful not to mix up n and k in the same formula. Do not write, for example $" a_{n+1}=2\left(2^{k+1}+1\right)-1 "$

Here is a repeat of the basic procedure in induction (See also sheet 2.)
Base case: prove "it" (whatever the statement is) for n_{0} (whatever the first integer is)
Inductive step: Assume " it " is true for n (or k) where n (or k) is any fixed integer $\geq n_{0}$ and from this assumption prove "it" is true for $n+1$ (or $k+1$)

Hence by induction "it" must be true for all $n \in \mathbb{N}$ with $n \geq n_{0}$.
This last "finishing off" step was missing in some answers I saw. I am only giving full marks when I can see something that I can recognise as "finishing off" - even though that is only one mark.

Induction works because of the nature of the set of integers. If a set includes an integer n_{0} - the base case - and includes $n+1$ whenever if includes n, then it includes all integers $\geq n_{0}$.
2. We have

$$
\begin{gathered}
a_{1}=1, \\
a_{n+1}=\frac{6 a_{n}+5}{a_{n}+2}, k \in \mathbb{Z}_{+}
\end{gathered}
$$

(i) So $a_{1}>0$ (This is the base case. If $a_{n}>0$ then $a_{n}+2>0$ and $6 a_{n}+5>0$ and hence $a_{n+1}>0$ (This is the inductive step. So by induction $a_{n}>0$ for all $n \geq 1$.
(ii) Clearly $a_{1}<5$ (This is the base case.) Now for the inductive step: assume inductively that $0<a_{n}<5$. Then $0<a_{n}+2$ and

$$
a_{n+1}=\frac{6 a_{n}+5}{a_{n}+2}<\frac{5 a_{n}+10}{a_{n}+2}=5 .
$$

So $0<a_{n}<5 \Rightarrow 0<a_{n+1}<5$ and by induction $0<a_{n}<5$ for all $n \geq 1$

Some people took the base case in this question as $n=2$ - often without realising it. I think it must have been because the base case $n=1$ was so easy. The base case held because $a_{1}=1$ satisfies $0<1<5$. I also saw a number of probably unintentional variants of the inductive step. One was "if true for $n+1$ then true for $n+2$ ". It is permissible to prove "True for $n+1$ if and only if true for n " in order to prove "if true for n then true for $n+1$ " but if this is done then the "if and only if" symbol \Leftrightarrow should be used. For example: "Suppose that $a_{n}>0$. Then

$$
a_{n+1}<5 \Leftrightarrow \frac{6 a_{n}+5}{a_{n}+2}<5 \Leftrightarrow 6 a_{n}+5<5 a_{n}+10 \Leftrightarrow a_{n}<5
$$

Hence $0<a_{n}<5 \Rightarrow a_{n+1}<5 "$ The assumption that $a_{n}>0-$ or at least $a_{n}+2>0-$ is needed in order to pass from $\frac{6 a_{n}+5}{a_{n}+2}<5$ to $6 a_{n}+5<5 a_{n}+10$.
3. $3^{7}=2187$ and $7!=5040$. So $3^{n}<n!$ is true for $n=7$.

Now suppose that $3^{n}<n$! for some $n \in \mathbb{N}$ with $n \geq 7$. Then $3^{n+1}=3 \times 3^{n}<3 \times n!<$ $(n+1) \times n!=(n+1)!$ So $3^{n}<n!\Rightarrow 3^{n+1}<(n+1)$! for all $n \in \mathbb{N}$ with $n \geq 7$

So by induction $3^{n}<n$! for all $n \in \mathbb{N}$ with $n \geq 7$
4.
a) $104=8 \times 13=2^{3} \times 13$. So the positive divisors (this is what I meant) are $1,2,4,8,13$, $26=2 \times 13,52=4 \times 13$ and $104=8 \times 13$.
b) $462=2 \times 231=2 \times 3 \times 77=2 \times 3 \times 7 \times 11$. So the positive divisors are $1,2,3,7,116,14$, $22,21,33,42,66,77,154,231,462$.
c) $3432=8 \times 429=8 \times 3 \times 143=8 \times 3 \times 11 \times 13$. So the positive divisors are $2^{n}, 2^{n} \cdot 3,2^{n} \cdot 11$, $2^{n} \cdot 13,2^{n} \cdot 33,2^{n} \cdot 39,2^{n} \cdot 143$ and $2^{n} \cdot 429$, all for $0 \leq n \leq 3$, that is, writing them in increasing order.
$1,2,3,4,6,8,11,12,13,22,24,26,33,39,44,52,, 66,78,88,104,132,143,156,264$, $286,312,429,572,858,1144,1716,3432$.

The number of positive divisors is computed from the prime factorisation, thus, $(3+1) \times(1+1)$ in part a) and $(1+1) \times(1+1) \times(1+1) \times(1+1)$ in part b) and $(3+1) \times(1+1) \times(1+1) \times(1+1)$ in part $c)$. I did want all the divisors written down, and I think all the answers that I saw did recognise this.
5. We have

$$
\prod_{i=2}^{2}\left(1-\frac{1}{i^{2}}\right)=1-\frac{1}{2^{2}}=\frac{3}{4}=\frac{2+1}{2 \times 2}
$$

So the formula is true for $n=2$. Now assume inductively that for some integer $n \geq 2$,

$$
\prod_{i=2}^{n}\left(1-\frac{1}{i^{2}}\right)=\frac{n+1}{2 n}
$$

Then

$$
\prod_{i=2}^{n+1}\left(1-\frac{1}{i^{2}}\right)=\frac{n+1}{2 n}\left(1-\frac{1}{(n+1)^{2}}\right)=\frac{n+1}{2 n}(n+1)^{2}-1(n+1)^{2}
$$

$$
=\frac{1}{2 n} \frac{n^{2}+2 n}{n+1}=\frac{n+2}{2(n+1)}
$$

So if the formula holds for n it holds for $n+1$ and hence by induction it holds for all n.
Unfamiliarity with product notation was, not surprisingly, a source of some difficulty with this question. Product notation is very similar to sum notation. So

$$
\prod_{i=2}^{n}\left(1-\frac{1}{i^{2}}\right)=\left(1-\frac{1}{2^{2}}\right) \times\left(1-\frac{1}{3^{2}}\right) \times \cdot \times\left(1-\frac{1}{n^{2}}\right)
$$

and

$$
\prod_{i=2}^{n+1}\left(1-\frac{1}{i^{2}}\right)=\left(1-\frac{1}{2^{2}}\right) \times\left(1-\frac{1}{3^{2}}\right) \times \cdot \times\left(1-\frac{1}{n^{2}}\right) \times\left(1-\frac{1}{(n+1)^{2}}\right)
$$

Solutions to Practice Problems

6. When $n=2$

$$
2^{n}+n^{2}=4+4=8<9=3^{2}
$$

So $2^{n}+n^{2}<3^{n}$ is true for $n=2$. Now assume it is true for some $n \in \mathbb{N}$ with $n \geq 2$. Then using $(n+1)^{2} \leq \frac{9}{4} n^{2}$,

$$
2^{n+1}+(n+1)^{2} \leq 2^{n}+2^{n}+\frac{9}{4} n^{2}=2 \times\left(2^{n}+n^{2}\right)+\frac{1}{4} n^{2}<3\left(2^{n}+n^{2}\right)<3 \cdot 3^{n}=3^{n+1} .
$$

So $2^{n}+n^{2}<3^{n} \Rightarrow 2^{n+1}+(n+1)^{2}<3^{n+1}$ for all $n \in \mathbb{N}$ with $n \geq 2$. So by induction, $2^{n}+n^{2}<3^{n}$ for all $n \in \mathbb{N}$ with $n \geq 2$.
7. When $n=0$ we have $a_{0}=2=3^{0}+1$. So $a_{n}=3^{n}+1$ is true for $n=0$. Now assume that $a_{n}=3^{n}+1$ for some $n \in \mathbb{N}$. Then $a_{n+1}=3 a_{n}-2=3\left(3^{n}+1\right)-2=3^{n+1}+1$. So by induction the formula $a_{n}=3^{n}+1$ holds for all $n \in \mathbb{N}$.
8. We have $\frac{1}{2}<a_{0}=1$. So $\frac{1}{2} \leq a_{n} \leq 1$ when $n=0$. Now assume this holds for some $n \in \mathbb{N}$. We want to deduce it for $n+1$. If $a_{n} \geq \frac{1}{2}$ then $3 a_{n}+1 \geq \frac{5}{2}>0$. and $3 a_{n}+1>a_{n}+1$. So it is certainly true that

$$
\frac{a_{n}+1}{3 a_{n}+1}<1
$$

Since $3 a_{n}+1>0$ we have

$$
\frac{1}{2} \leq \frac{a_{n}+1}{3 a_{n}+1} \Leftrightarrow 3 a_{n}+1 \leq 2 a_{n}+2 \Leftrightarrow a_{n} \leq 1
$$

So

$$
a_{n} \leq 1 \Rightarrow \frac{1}{2}<a_{n+1}
$$

and

$$
\frac{1}{2} \leq a_{n} \leq 1 \Rightarrow \frac{1}{2} \leq a_{n+1} \leq 1
$$

So by induction $\frac{1}{2} \leq a_{n} \leq 1$ for all $n \in \mathbb{N}$.
9. From the definition of multiplication, and $m \cdot 1=m$ we have

$$
m \cdot(n+1)=m \cdot n+m=m \cdot n+m \cdot 1
$$

So $m \cdot(n+p)=m \cdot n+m \cdot p$ is true for $p=1$.
Now assume inductively that it is true for p. Then

$$
m \cdot(n+(p+1))=m \cdot((n+p)+1)=m \cdot(n+p)+m \cdot 1=(m \cdot n+m \cdot p)+m .
$$

The first equality uses associativity of addition and the second uses the inductive definition of multiplication and the third uses the inductive hypothesis and $m \cdot 1=m$. But then

$$
(m \cdot n+m \cdot p)+m=m \cdot n+(m \cdot p+m)=m \cdot n+m \cdot(p+1)
$$

where the first equality uses associativity of multiplication and the second uses the inductive definition of multiplication. This completes the proof that

$$
(m \cdot(n+p)=m \cdot n+m \cdot p) \Rightarrow(m \cdot(n+(p+1))=m \cdot n+m \cdot(p+1))
$$

So by induction

$$
m \cdot(n+p)=m \cdot n+m \cdot p
$$

for all $m, n, p \in \mathbb{Z}_{+}$.

