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1. Base case We have a0 = 3 = 21 + 1. So an = 2n+1 + 1 is true for n = 0.
Inductive step Now suppose that an = 2n+1 + 1 for some n ∈ N. Then

an+1 = 2an − 1 = 2(2n+1 + 1)− 1 = 2n+2 + 2− 1 = 2n+2 + 1

So
an = 2n+1 + 1⇒ an+1 = 2n+2 + 1

So by induction an = 2n+1 + 1 for all n ∈ N.
The inductive step is to assume a statement for n and prove a statement for n + 1. In this question

– which was probably found the easiest by most people – there was also an inductive definition of an+1 in
terms of an, which was given, and which was an+1 = 2an − 1. Most answers that I saw understand what
was to be proved and what was given. The inductive definition an+1 = 2an− 1 was given and the formula
an = 2n+1 + 1 was to be proved, by induction, for all n ∈ N. Most answers I saw did prove the formula,
or made a good attempt to prove it, but there were a few answers which assumed the formula and then
deduced the inductive definition from it.

Some people are writing the inductive step as “ true for n = k, implies for n = k + 1 ...hence true
for all n ≥ 0 (or 1 or 7) by induction.” This is fine, but is optional. I am not promoting it strongly
because there are more advanced induction questions in which induction is on two different integers, for
example. Also, do be careful not to mix up n and k in the same formula. Do not write, for example
“an+1 = 2(2k+1 + 1)− 1”

Here is a repeat of the basic procedure in induction (See also sheet 2.)
Base case: prove “it” (whatever the statement is) for n0 (whatever the first integer is)
Inductive step: Assume “it” is true for n (or k) where n (or k) is any fixed integer ≥ n0 and from

this assumption prove “it” is true for n + 1 (or k + 1)
Hence by induction “it” must be true for all n ∈ N with n ≥ n0.
This last “finishing off ” step was missing in some answers I saw. I am only giving full marks when

I can see something that I can recognise as “finishing off” - even though that is only one mark.

Induction works because of the nature of the set of integers. If a set includes an integer n0 – the base

case — and includes n + 1 whenever if includes n, then it includes all integers ≥ n0.

2. We have
a1 = 1,

an+1 =
6an + 5

an + 2
, k ∈ Z+.

(i) So a1 > 0 (This is the base case. If an > 0 then an + 2 > 0 and 6an + 5 > 0 and hence
an+1 > 0 (This is the inductive step. So by induction an > 0 for all n ≥ 1.

(ii) Clearly a1 < 5 (This is the base case.) Now for the inductive step: assume inductively that
0 < an < 5. Then 0 < an + 2 and

an+1 =
6an + 5

an + 2
<

5an + 10

an + 2
= 5.

So 0 < an < 5⇒ 0 < an+1 < 5 and by induction 0 < an < 5 for all n ≥ 1



Some people took the base case in this question as n = 2 – often without realising it. I think it must
have been because the base case n = 1 was so easy. The base case held because a1 = 1 satisfies 0 < 1 < 5.
I also saw a number of probably unintentional variants of the inductive step. One was “if true for n + 1
then true for n+ 2”. It is permissible to prove “True for n+ 1 if and only if true for n” in order to prove
“if true for n then true for n+ 1” but if this is done then the “if and only if” symbol ⇔ should be used.
For example: “Suppose that an > 0. Then

an+1 < 5⇔ 6an + 5

an + 2
< 5⇔ 6an + 5 < 5an + 10⇔ an < 5

Hence 0 < an < 5 ⇒ an+1 < 5” The assumption that an > 0 – or at least an + 2 > 0 — is needed in

order to pass from
6an + 5

an + 2
< 5 to 6an + 5 < 5an + 10.

3. 37 = 2187 and 7! = 5040. So 3n < n! is true for n = 7.
Now suppose that 3n < n! for some n ∈ N with n ≥ 7. Then 3n+1 = 3 × 3n < 3 × n! <

(n + 1)× n! = (n + 1)! So 3n < n!⇒ 3n+1 < (n + 1)! for all n ∈ N with n ≥ 7
So by induction 3n < n! for all n ∈ N with n ≥ 7

4.

a) 104 = 8 × 13 = 23 × 13. So the positive divisors (this is what I meant) are 1, 2, 4, 8, 13,
26 = 2× 13, 52 = 4× 13 and 104 = 8× 13.

b) 462 = 2× 231 = 2× 3× 77 = 2× 3× 7× 11. So the positive divisors are 1, 2, 3, 7, 11 6, 14,
22, 21, 33, 42, 66, 77, 154, 231, 462.

c) 3432 = 8× 429 = 8× 3× 143 = 8× 3× 11× 13. So the positive divisors are 2n, 2n · 3, 2n · 11,
2n · 13, 2n · 33, 2n · 39, 2n · 143 and 2n · 429, all for 0 ≤ n ≤ 3, that is, writing them in increasing
order.

1, 2, 3, 4, 6, 8, 11, 12, 13, 22, 24, 26, 33, 39, 44, 52, , 66, 78, 88, 104, 132, 143, 156, 264,

286, 312, 429, 572, 858, 1144, 1716, 3432.

The number of positive divisors is computed from the prime factorisation, thus, (3 + 1)× (1 + 1) in part

a) and (1 + 1)× (1 + 1)× (1 + 1)× (1 + 1) in part b) and (3 + 1)× (1 + 1)× (1 + 1)× (1 + 1) in part c).

I did want all the divisors written down, and I think all the answers that I saw did recognise this.

5. We have
2∏

i=2

(
1− 1

i2

)
= 1− 1

22
=

3

4
=

2 + 1

2× 2

So the formula is true for n = 2. Now assume inductively that for some integer n ≥ 2,

n∏
i=2

(
1− 1

i2

)
=

n + 1

2n
.

Then
n+1∏
i=2

(
1− 1

i2

)
=

n + 1

2n

(
1− 1

(n + 1)2

)
=

n + 1

2n
(n + 1)2 − 1(n + 1)2



=
1

2n

n2 + 2n

n + 1
=

n + 2

2(n + 1)

So if the formula holds for n it holds for n + 1 and hence by induction it holds for all n.

Unfamiliarity with product notation was, not surprisingly, a source of some difficulty with this ques-
tion. Product notation is very similar to sum notation. So

n∏
i=2

(
1− 1

i2

)
=

(
1− 1

22

)
×
(

1− 1

32

)
× · ×

(
1− 1

n2

)
and

n+1∏
i=2

(
1− 1

i2

)
=

(
1− 1

22

)
×
(

1− 1

32

)
× · ×

(
1− 1

n2

)
×
(

1− 1

(n + 1)2

)



Solutions to Practice Problems

6. When n = 2
2n + n2 = 4 + 4 = 8 < 9 = 32

So 2n + n2 < 3n is true for n = 2. Now assume it is true for some n ∈ N with n ≥ 2. Then using
(n + 1)2 ≤ 9

4
n2,

2n+1 + (n + 1)2 ≤ 2n + 2n +
9

4
n2 = 2× (2n + n2) +

1

4
n2 < 3(2n + n2) < 3 · 3n = 3n+1.

So 2n +n2 < 3n ⇒ 2n+1 + (n+ 1)2 < 3n+1 for all n ∈ N with n ≥ 2. So by induction, 2n +n2 < 3n

for all n ∈ N with n ≥ 2.

7. When n = 0 we have a0 = 2 = 30 + 1. So an = 3n + 1 is true for n = 0. Now assume that
an = 3n + 1 for some n ∈ N. Then an+1 = 3an − 2 = 3(3n + 1) − 2 = 3n+1 + 1. So by induction
the formula an = 3n + 1 holds for all n ∈ N.

8. We have 1
2
< a0 = 1. So 1

2
≤ an ≤ 1 when n = 0. Now assume this holds for some n ∈ N.

We want to deduce it for n + 1. If an ≥ 1
2

then 3an + 1 ≥ 5
2
> 0. and 3an + 1 > an + 1. So it is

certainly true that
an + 1

3an + 1
< 1

Since 3an + 1 > 0 we have

1

2
≤ an + 1

3an + 1
⇔ 3an + 1 ≤ 2an + 2⇔ an ≤ 1.

So

an ≤ 1⇒ 1

2
< an+1

and
1

2
≤ an ≤ 1⇒ 1

2
≤ an+1 ≤ 1

So by induction 1
2
≤ an ≤ 1 for all n ∈ N.

9. From the definition of multiplication, and m · 1 = m we have

m · (n + 1) = m · n + m = m · n + m · 1

So m · (n + p) = m · n + m · p is true for p = 1.
Now assume inductively that it is true for p. Then

m · (n + (p + 1)) = m · ((n + p) + 1) = m · (n + p) + m · 1 = (m · n + m · p) + m.

The first equality uses associativity of addition and the second uses the inductive definition of
multiplication and the third uses the inductive hypothesis and m · 1 = m. But then

(m · n + m · p) + m = m · n + (m · p + m) = m · n + m · (p + 1)

where the first equality uses associativity of multiplication and the second uses the inductive
definition of multiplication. This completes the proof that

(m · (n + p) = m · n + m · p) ⇒ (m · (n + (p + 1)) = m · n + m · (p + 1))

So by induction
m · (n + p) = m · n + m · p

for all m, n, p ∈ Z+.


