Solutions 11

1.

a) Since $n^{2}+1<(n+1)^{2}+1$ for all $n \geq 1$, we have $\frac{2}{(n+1)^{2}+1}<\frac{2}{n^{2}+1}$ for all $n \geq 1$ and $x_{n+1}<x_{n}$ for all $n>1$. So x_{n} is decreasing.
b) Since $\frac{2}{(n+1)^{2}+1}<\frac{2}{n^{2}+1}$ for all $n \geq 1$ we have $1-\frac{2}{n^{2}+1}<1-\frac{2}{(n+1)^{2}+1}$ for all $n \geq 1$. So this sequence x_{n} is increasing.
c) We have $x_{n}=n^{2}-3 n+1=(n-1)(n-2)$. So $x_{1}=x_{2}=0$ and for $n \geq 2$, the numbers $n-1$ and $n-2$ are increasing with n and positive. So the product $(n-1)(n-2)$ is postive and increasing with n, and strictly positive for $n \geq 3$. Sop $x_{n} \leq x_{n+1}$ for all $n \geq 1$. in fact $x_{n}<x_{n+1}$ for all $n \geq 2$, and x_{n} is an increasing sequence.
d) $3^{n}<3^{n+1}$ for all $n \geq 1$ and $1-3^{n+1}<1-3^{n}<0$ for all $n \geq 1$. So $\frac{1}{1-3^{n}}<\frac{1}{1-3^{n+1}}$ for all $n \geq 1$ and this sequence x_{n} is increasing
e) $x_{n+1}-x_{n}=\frac{1}{(n+1)!}>0$ so $x_{n}<x_{n+1}$ and x_{n} is increasing. (Looking at the first few terms, $x_{1}=1, x_{2}=\frac{3}{2}, x_{3}=\frac{5}{3}, x_{4}=\frac{41}{24}$.)
f) $x_{n+1}-x_{n}=\frac{(-1)^{n+2}}{(n+1)^{2}}$ which is >0 if n is even and <0 if n is odd. So this sequence x_{n} is neither increasing nor decreasing. Alternatively, we can just look at the first few terms. We have $x_{1}=1, x_{2}=1-\frac{1}{4}=\frac{3}{4}$ and $x_{3}=1-\frac{1}{4}+\frac{1}{9}=\frac{31}{36}>\frac{3}{4}$. So $x_{2}<x_{3}<x_{1}$ and the sequence is neither increasing nor decreasing.
g) $x_{1}=1, x_{2}=\frac{1}{1+1}=\frac{1}{2}, x_{3}=\frac{1}{1+\frac{1}{2}}=\frac{2}{3}$. So $x_{2}<x_{3}<x_{1}$ and the sequence is neither increasing nor decreasing.
h)

$$
x_{1}=1, \quad x_{2}=\frac{1}{1+1}=\frac{1}{2}, \quad x_{3}=\frac{\frac{1}{2}}{1+\frac{1}{2}}=\frac{1}{3}, \quad x_{4}=\frac{\frac{1}{3}}{1+\frac{1}{3}}=\frac{1}{4} .
$$

It seems reasonable to conjecture that $x_{n}=\frac{1}{n}$ for all $n \geq 1$. This is certainly true for $n=1$. Suppose inductively that $x_{n}=\frac{1}{n}$. Then

$$
x_{n+1}=\frac{\frac{1}{n}}{1+\frac{1}{n}}=\frac{1}{n} \cdot \frac{n}{n+1}=\frac{1}{n+1} .
$$

So if true for n it is true for $n+1$ and hence $x_{n}=\frac{1}{n}$ for all $n \geq 1$. This is a decreasing sequence.
2.
a) This is a decreasing sequence of strictly positive numbers with $x_{1}=\frac{1}{2}$. So the sequence is bounded above by $\frac{1}{2}$ and below by 0 .
b) This is an increasing sequence of numbers, all less than 1 , with $x_{1}=$. So the sequence is bounded above by 1 and below by 0 .
c) Since both $n-1$ and $n-2$ get arbitrarily large and positive as $n \rightarrow \infty$, the sequence $x_{n}(n-$ 1) $(n-2)$ is not bounded above. However it is an increasing sequence and hence it is bounded below by $x_{1}=0$.
d) This is an increasing sequence of negative numbers, bounded below by $x_{1}=-\frac{1}{2}$ and above by 0 .
e) Since k ! is the product of 1 and $k-1$ positive numbers which are all ≥ 2, we have $k!\geq 2^{k-1}$. Hence

$$
x_{n}=\sum \frac{1}{k!} \leq \sum_{k=1}^{n} \frac{1}{2^{k-1}}=\sum_{k=0}^{n-1} \frac{1}{2^{k}}=2-\frac{1}{2^{n-1}}<2
$$

Since x_{n} is clearly positive for all n, the sequence is bounded above by 2 and below by 0 .
f) We see that

$$
\begin{equation*}
x_{n+1}-x_{n}=\frac{(-1)^{n+2}}{(n+1)^{2}} \tag{1}
\end{equation*}
$$

which is <0 if n is odd and >0 if n is even. So $x_{n+1}<x_{n}$ if n is odd and >0 if n is even. Also from (1), it follows that $0<x_{n+2}-x_{n+1}<x_{n}-x_{n+1}$ whenever n is odd, that is, $x_{n+1}<x_{n+2}<x_{n}$ whenever n is odd. Similarly $x_{n}<x_{n+2}<x_{n+1}$ whenever n is even. It follows that the sequence x_{n} is bounded below by $x_{2}=\frac{3}{4}$ and above by $1=x_{1}$.
g) By induction $x_{n}>0$ for all n because $x_{1}=1>0$ and if $x_{n}>0$ then $x_{n+1}=\frac{1}{1+x_{n}}>0$. So $0<1+x_{n}$ for all $n \geq 1$ and $x_{n+1}<1$ for all $n \geq 1$. Also, $x_{1}=1$. So x_{n} is bounded above by 1 and below by 0
h) Using $x_{n}=\frac{1}{n}$ we see that x_{n} is bounded above by 1 and below by 0 . Alternatively, if one has not noticed this, one can argue as follows:
By induction $x_{n}>0$ for all n because $x_{1}=1>0$ and if $x_{n}>0$ then $x_{n+1}=\frac{x_{n}}{1+x_{n}}>0$. So $0<x_{n}<1+x_{n}$ for all $n \geq 1$ and $x_{n+1}<1$ for all $n \geq 1$. Also, $x_{1}=1$. So x_{n} is bounded above by 1 and below by 0
3. The sequences of 1 a$), 1 \mathrm{~b}), 1 \mathrm{~d}$), 1e) and 1 h) are all either increasing or decreasing, and bounded (both above and below). By the Completeness Axiom, any bounded sequence of real numbers which is either increasing, or decreasinf, has a limit in \mathbb{R}.

The sequence in c) does not have a limit because it is not bounded and any sequence which has a limit must be bounded.
4.
a) It is shown above in the solution to question 2 that the sequence in 1f) satisfies $x_{2 n}<x_{2 n+1}<$ $x_{2 n-1}$ for all $n \geq 1$.
We also saw in the solution to question 2 that for the sequence 1 g), $x_{2}<x_{3}<x_{1}$. Now we prove by induction on n that $x_{2 n}<x_{2 n+1}<x_{2 n-1}$ for all $n \geq 1$. We know it is true for $n=1$. So now we assume it is true for n and prove if for $n+1$. It suffices to show that

$$
x_{n}<x_{m} \Rightarrow x_{m+1}<x_{n+1}
$$

because then

$$
x_{2 n}<x_{2 n+1}<x_{2 n-1} \Rightarrow x_{2 n}<x_{2 n+2}<x_{2 n+1} \Rightarrow x_{2 n+2}<x_{2 n+3}<x_{2 n+1}
$$

which is what we need to prove. We know from the solution to 2 that $x_{n}>0$ for all n

$$
0<x_{n}<x_{m} \Rightarrow 1<1+x_{n}<1+x_{m} \Rightarrow x_{m+1}=\frac{1}{1+x_{m}}<\frac{1}{1+x_{n}}=x_{n+1}<1
$$

which is what we needed to prove.
b) Since $x_{2 n-1}$ is a decreasing sequence bounded below by x_{2}, it has a real limit ℓ_{1} and since $x_{2 n}$ is an increasing sequence bounded above by x_{1} it has a real limit limit ℓ_{2}.
c) In case 1f)

$$
\begin{equation*}
x_{2 n-1}-x_{2 n}=\frac{1}{(2 n)^{2}}=\frac{1}{4 n^{2}} \tag{2}
\end{equation*}
$$

So

$$
\lim _{n \rightarrow \infty} x_{2 n-1}-x_{2 n}=\lim _{n \rightarrow \infty} \frac{1}{4 n^{2}}=0
$$

Given $\varepsilon>0$ there exists N such that for all $n \geq N$

$$
\left|x_{2 n-1}-\ell_{1}\right| \leq \varepsilon, \quad\left|x_{2 n}-\ell_{2}\right|<\varepsilon, \quad\left|x_{2 n-1}-x_{2 n}\right|=\frac{1}{4 n^{2}}<\varepsilon .
$$

So

$$
\left|\ell_{1}-\ell_{2}\right| \leq\left|\ell_{1}-x_{2 n-1}\right|+\left|x_{2 n-1}-x_{2 n}\right|+\left|x_{2 n}-\ell_{2}\right|<3 \varepsilon .
$$

Since ε can be taken as small as we like it follows that $\ell_{1}=\ell_{2}$ and hence for all $n \geq N$, $\left|x_{n}-\ell_{1}\right|<\varepsilon$. So $\lim _{n \rightarrow \infty} x_{n}=\ell_{1}$.
d) It is reasonable to expect that a limit ℓ would satisfy

$$
x=\frac{1}{1+x}
$$

which implies $x^{2}-x-1=0$ and $x=(1 \pm \sqrt{5}) / 2$. Since we know that $x_{n}>0$ for all n, we guess that the limit is $(-1+\sqrt{5}) / 2$. This is true.
5.
a) $x \mapsto \ln x$ maps $(0, \infty)$ onto \mathbb{R} and \mathbb{R} is uncountable, so $(0, \infty)$ is uncountable.
b) $x \mapsto \frac{1}{x}-1$ maps $(0,1)$ ontoto $(0, \infty)$. If we define

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{x}-1 \text { if } x \in(0,1) \\
1 \text { if } x=0 \text { or } 1
\end{array}\right.
$$

then f maps $[0,1]$ onto $(0, \infty)$ which is uncountable by a) and hence $[0,1]$ is uncountable.
c) Since \mathbb{Q} itself is countable, any subset is also countable and in particular $\mathbb{Q} \cap[0,1]$ is countable.
d) Since the set of all integers is countable the subset of even integers is countable. It is also easy to construct a bijection f from \mathbb{Z}_{+}onto the set of even integers by

$$
f(n)=\left\{\begin{array}{l}
n \text { if } n \text { is even } \\
1-n \text { if } n \text { is odd }
\end{array}\right.
$$

6. The map

$$
\left(\left(a_{1}, \cdots a_{n-1}\right), a_{n}\right) \mapsto\left(a_{1}, \cdots a_{n}\right)
$$

is a bijection between $A^{n-1} \times A$ and A^{n}. So $A^{n-1} \times A$ is countable $\Leftrightarrow A^{n}$ is countable.
$A^{1}=A$ is countable. Assume inductively that A^{n} is countable. Then putting $B=A^{n}$, $B \times A=A^{n} \times A$ is countable and hence A^{n+1}, which is bijective to $A^{n} \times A$, is countable. Hence A^{n} is countable for all n.
7. Suppose that $X=\left\{\left(a_{n}\right): a_{n} \in A \forall n \in \mathbb{Z}_{+}\right\}$is countable. then there is a bijection $f: \mathbb{Z}_{+} \rightarrow X$. Write $f(n)=\left(a_{m, n}\right)$. Choose a sequence $\left(a_{m}\right)$ so that $a_{m} \neq a_{m, m}$ for each m. This is possible because A has at least two elements and therefore we can always choose $a_{m} \in A \backslash\left\{a_{m, m}\right\}$. Since $a_{n} \neq a_{n, n}$ for each $n \in \mathbb{Z}_{+},\left(a_{m}\right) \neq f(m)$ for each $m \in \mathbb{Z}_{+}$. But $\left(a_{n}\right) \in X$ and hence f is not surjective. This is a contradiction, because f is a bijection.
8.

1. If $x=3-\sqrt{2}$, then $x^{2}=(3-\sqrt{2})^{2}=11-6 \sqrt{2}$ and so $x^{2}-6 x+7=0$
2. If $x=\sqrt{3}-1$ then $x^{2}=4-2 \sqrt{3}$ and so $x^{2}+2 x-2=0$
3. If $x=\sqrt{3}-\sqrt{2}$ then $x^{2}=5-2 \sqrt{6}$ and so $x^{4}=49-20 \sqrt{6}$ and $x^{4}-10 x^{2}+1=0$.
