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1.

a) Because of the way the continued fraction expansion repeats, we need a number x satisfying

x =
1

3 + x

that is
x2 + 3x− 1 = 0.

This implies that

x = −3

2
±
√
13

2
Since all continued fractions with positive integers represent positive numbers, we must have
x = (−3 +

√
13)/2.

b) This time we must have

x =
1

3 + 1
1+x

=
x+ 1

3x+ 4
.

So
3x2 + 3x− 1 = 0

and

x =
−3±

√
21

6

and again we need to take the positive root. So x = (−3 +
√
21)/2

2.

a) One could use calculus, but it is not necessary because if x < y then x3 < y3 and hence
x3 + x+ 3 < y3 + y + 3. If using calculus, then f ′(x) = 3x2 + 1 > 0 for all x ∈ R, and hence f
is strictly increasing.

b) There are no integer solutions to f(x) = 0 because f(−2) = −7 and f(−1) = 1. So f(n) < 0
for all n ∈ Z with n ≤ −2 and f(n) > 0 for all n ∈ Z with n ≥ −1. Suppose

p3

q3
+

p

q
+ 3 = 0

for p ∈ Z and q ∈ Z+. We can assume the g.c.d of p and q is one and then q ≥ 2 because there
are no integer solutions to f(x) = 0. Then multiplying by q3 we have

p3 + pq2 + 3q3 = 0

This can be rewritten as
p3 = −q2(p+ 3q)

Let k be any prime factor of q. There is at least one, because q ≥ 2.Then k|p3. Hence by
unique factorisation, k|p and k is a factor of both p and q, giving a contradiction.

It is necessary to take a prime dividing q. If q itself is not prime then one cannot deduce, from q | p3,
that q | p. For example, 4 | 63 = 216, but 4 6| 6.



c) The set A = {x ∈ Q : x3 + x + 3 < 0} is a Dedekind cut because −2 ∈ A, 0 /∈ A and
x ∈ A ∧ y < x ⇒ f(y) < f(x) < 0 ⇒ y ∈ A (because f is strictly increasing) and A has no
maximal element - which can be proved using continuity of f .

You were not required to prove that A is a Dedekind cut in this exercise. But it should be made clear

that A is a set of rational numbers. Remember that Q is the set of rational numbers.

3.

a) For f(x) = x3 − 12x+ 2,

f(−4) = −14 < 0, f(−3) = 11 > 0, f(0) = 2 > 0, f(1) = −9 < 0,

f(3) = −7 < 0, f(4) = 14 > 0.

Applying the intermediate value theorem to f on each of the intervals [−4,−3], [0, 1] and [3, 4],
we see that f has a zero in each of the intervals (−4,−3), (0, 1) and (3, 4). Also f ′(x) =
3x2−12 = 3(x2−4) = 0↔ x = ±2. Also f ′(x) > 0 if x ∈ (−∞,−2)∪ [(2,∞) and f ′(x) < 0 on
(−2, 2). So f is strictly increasing on each of the intervals (−∞,−2] and on [2,∞), and strictly
decreasing on [−2, 2]. In particular f is strictly increasing on each of the intervals [−4,−3] and
[3, 4] and strictly decreasing on [0, 1]. So because of the values of f that have been computed,
f must have a zero in each of the intervals (−4,−3), (3, 4) and (0, 1).

The change of sign on each of the intervals, and the Intermediate Value Theorem, show that there is

at least one zero of f in each of the intervals (−4,−3), (0, 1), (3, 4). The calculus is used to show

that there are no more than three zeros, by showing that there is at most one zero of f in each of the

intervals (−4,−3), (0, 1), (3, 4). It is acceptable to say that any cubic polynomial has at most three

zeros.

b) The Dedekind cuts can be expressed as

A1 = {x ∈ Q : f(x) < 0 ∧ x < −3}, A2 = {x ∈ Q : x < −3} ∪ {x ∈ Q : f(x) > 0 ∧ x < 1},

A3 = {x ∈ Q : x < 3 ∨ f(x) < 0}

In each case, x ∈ Aj ∧ y < x⇒ y ∈ Aj, −4 ∈ Aj, 5 /∈ Aj and Aj has no maximal element. Full
proof of Aj not having a maximal element is not required.

There are many forms for the correct solution.

4.
p−1q0 − p0q−1 = 1− 0 = 1 = (−1)0. So pn−1qn − pnqn−1 = (−1)n is true for n = 0.
Now assume that pn−1qn − pnqn−1 = (−1)n. Then

pnqn+1 − pn+1qn = pn(qn−1 + anqn)− (pn−1 + anpn)qn

= pnqn−1 + anpnqn − pn−1qn − anpnqn = pnqn−1 − pn−1qn = −(−1)n = (−1)n+1.

So by induction pn−1qn − pnqn−1 = (−1)n for all n ≥ 0.

This proof uses the inductive definition of pn+1 and qn+1, that is pn+1 = pn−1+an+1pn, and similarly

for qn+1. This is what the hint suggested. You should deduce that pnqn+1 − pn+1qn = (−1)n+1 from the

assumption that pn−1qn − pnqn−1 = (−1)n.



Solutions to Practice Problems

5.

a) Because of the way the continued fraction expansion repeats, we need a number x satisfying

x =
1

4 + x

that is
x2 + 4x− 1 = 0.

This implies that
x = −2±

√
5

Since all continued fractions with positive integers represent positive numbers, we must have
x = −2 +

√
5.

b) This time we must have

x =
1

4 + 1
1+x

=
x+ 1

4x+ 5
.

So
4x2 + 4x− 1 = 0

and

x =
−2±

√
8

4
=
−1±

√
2

2

and again we need to take the positive root. So x = (−1 +
√
2)/2

6.

a) One could use calculus, but it is not necessarily because if x < y then x3 < y3 and hence
x3 + 2x+ 5 < y3 + 2y + 5. If using calculus, then f ′(x) = 3x2 + 2 > 0 for all x ∈ R, and hence
f is strictly increasing.

b) There are no integer solutions to f(x) = 0 because f(−2) = −7 and f(−1) = 2. So f(n) < 0
for all n ∈ Z with n ≤ −2 and f(n) > 0 for all n ∈ Z with n ≥ −1. Suppose

p3

q3
+ 2

p

q
+ 5 = 0

for p ∈ Z and q ∈ Z+. We can assume the g.c.d of p and q is one and then q ≥ 2 because there
are no integer solutions to f(x) = 0Then multiplying by q3 we have

p3 + 2pq2 + 5q3 = 0

This can be rewritten as
p3 = −q2(2p+ 5q)

Let k be any prime factor of q. There is at least one because q ≥ 2.Then k|p3. Hence by unique
factorisation, k|p and k is a factor of both p and q, giving a contradiction.

c) The set A = {x ∈ Q : x3 + 2x+ 5 < 0} is a Dedekind cut because it has no maximal element,
0 /∈ A and x ∈ A ∧ y < x⇒ f(y) < f(x) < 0⇒ y ∈ A.



7.

a) For f(x) = x3 − 12x+ 1,

f(−4) = −15 < 0, f(−3) = 10 > 0, f(0) = 1 > 0, f(1) = −10 < 0,

f(3) = −8 < 0, f(4) = 15 > 0.

Applying the intermediate value theorem to f on each of the intervals [−4,−3], [0, 1] and [3, 4],
we see that f has a zero in each of the intervals (−4,−3), (0, 1) and (3, 4). Also f ′(x) =
3x2−12 = 3(x2−4) = 0↔ x = ±2. Also f ′(x) > 0 if x ∈ (−∞,−2)∪ [(2,∞) and f ′(x) < 0 on
(−2, 2). So f is strictly increasing on each of the intervals (−∞,−2] and on [2,∞), and strictly
decreasing on [−2, 2]. In particular f is strictly increasing on each of the intervals [−4,−3] and
[3, 4] and strictly decreasing on [0, 1]. So because of the values of f that have been computed,
f must have a zero in each of the intervals (−4,−3), (3, 4) and (0, 1).

b) The Dedekind cuts can be expressed as

A1 = {x ∈ Q : f(x) < 0 ∧ x < −3}, A2 = {x ∈ Q : x < −3} ∪ {x ∈ Q : f(x) > 0 ∧ x < 1},

A3 = {x ∈ Q : x < 3 ∨ f(x) < 0}

In each case, x ∈ Aj ∧ y < x⇒ y ∈ Aj and 5 /∈ Aj and Aj has no maximal element. Full proof
of Aj not having a maximal element is not required.


