MATH105 Feedback and Solutions 10

1.

a) Because of the way the continued fraction expansion repeats, we need a number x satisfying

$$
x=\frac{1}{3+x}
$$

that is

$$
x^{2}+3 x-1=0
$$

This implies that

$$
x=-\frac{3}{2} \pm \frac{\sqrt{13}}{2}
$$

Since all continued fractions with positive integers represent positive numbers, we must have $x=(-3+\sqrt{13}) / 2$.
b) This time we must have

$$
x=\frac{1}{3+\frac{1}{1+x}}=\frac{x+1}{3 x+4} .
$$

So

$$
3 x^{2}+3 x-1=0
$$

and

$$
x=\frac{-3 \pm \sqrt{21}}{6}
$$

and again we need to take the positive root. So $x=(-3+\sqrt{21}) / 2$
2.
a) One could use calculus, but it is not necessary because if $x<y$ then $x^{3}<y^{3}$ and hence $x^{3}+x+3<y^{3}+y+3$. If using calculus, then $f^{\prime}(x)=3 x^{2}+1>0$ for all $x \in \mathbb{R}$, and hence f is strictly increasing.
b) There are no integer solutions to $f(x)=0$ because $f(-2)=-7$ and $f(-1)=1$. So $f(n)<0$ for all $n \in Z$ with $n \leq-2$ and $f(n)>0$ for all $n \in \mathbb{Z}$ with $n \geq-1$. Suppose

$$
\frac{p^{3}}{q^{3}}+\frac{p}{q}+3=0
$$

for $p \in Z$ and $q \in \mathbb{Z}_{+}$. We can assume the g.c.d of p and q is one and then $q \geq 2$ because there are no integer solutions to $f(x)=0$. Then multiplying by q^{3} we have

$$
p^{3}+p q^{2}+3 q^{3}=0
$$

This can be rewritten as

$$
p^{3}=-q^{2}(p+3 q)
$$

Let k be any prime factor of q. There is at least one, because $q \geq 2$.Then $k \mid p^{3}$. Hence by unique factorisation, $k \mid p$ and k is a factor of both p and q, giving a contradiction.
It is necessary to take a prime dividing q. If q itself is not prime then one cannot deduce, from $q \mid p^{3}$, that $q \mid p$. For example, $4 \mid 6^{3}=216$, but $4 V / 6$.
c) The set $A=\left\{x \in \mathbb{Q}: x^{3}+x+3<0\right\}$ is a Dedekind cut because $-2 \in A, 0 \notin A$ and $x \in A \wedge y<x \Rightarrow f(y)<f(x)<0 \Rightarrow y \in A$ (because f is strictly increasing) and A has no maximal element - which can be proved using continuity of f.
You were not required to prove that A is a Dedekind cut in this exercise. But it should be made clear that A is a set of rational numbers. Remember that \mathbb{Q} is the set of rational numbers.
3.
a) For $f(x)=x^{3}-12 x+2$,

$$
\begin{gathered}
f(-4)=-14<0, \quad f(-3)=11>0, \quad f(0)=2>0, \quad f(1)=-9<0, \\
f(3)=-7<0, \quad f(4)=14>0 .
\end{gathered}
$$

Applying the intermediate value theorem to f on each of the intervals $[-4,-3],[0,1]$ and $[3,4]$, we see that f has a zero in each of the intervals $(-4,-3),(0,1)$ and $(3,4)$. Also $f^{\prime}(x)=$ $3 x^{2}-12=3\left(x^{2}-4\right)=0 \leftrightarrow x= \pm 2$. Also $f^{\prime}(x)>0$ if $x \in(-\infty,-2) \cup\left[(2, \infty)\right.$ and $f^{\prime}(x)<0$ on $(-2,2)$. So f is strictly increasing on each of the intervals $(-\infty,-2]$ and on $[2, \infty)$, and strictly decreasing on $[-2,2]$. In particular f is strictly increasing on each of the intervals $[-4,-3]$ and $[3,4]$ and strictly decreasing on $[0,1]$. So because of the values of f that have been computed, f must have a zero in each of the intervals $(-4,-3),(3,4)$ and $(0,1)$.
The change of sign on each of the intervals, and the Intermediate Value Theorem, show that there is at least one zero of f in each of the intervals $(-4,-3),(0,1),(3,4)$. The calculus is used to show that there are no more than three zeros, by showing that there is at most one zero of f in each of the intervals $(-4,-3),(0,1),(3,4)$. It is acceptable to say that any cubic polynomial has at most three zeros.
b) The Dedekind cuts can be expressed as

$$
\begin{gathered}
A_{1}=\{x \in \mathbb{Q}: f(x)<0 \wedge x<-3\}, \quad A_{2}=\{x \in \mathbb{Q}: x<-3\} \cup\{x \in \mathbb{Q}: f(x)>0 \wedge x<1\}, \\
A_{3}=\{x \in \mathbb{Q}: x<3 \vee f(x)<0\}
\end{gathered}
$$

In each case, $x \in A_{j} \wedge y<x \Rightarrow y \in A_{j},-4 \in A_{j}, 5 \notin A_{j}$ and A_{j} has no maximal element. Full proof of A_{j} not having a maximal element is not required.

There are many forms for the correct solution.
4.
$p_{-1} q_{0}-p_{0} q_{-1}=1-0=1=(-1)^{0}$. So $p_{n-1} q_{n}-p_{n} q_{n-1}=(-1)^{n}$ is true for $n=0$.
Now assume that $p_{n-1} q_{n}-p_{n} q_{n-1}=(-1)^{n}$. Then

$$
\begin{gathered}
p_{n} q_{n+1}-p_{n+1} q_{n}=p_{n}\left(q_{n-1}+a_{n} q_{n}\right)-\left(p_{n-1}+a_{n} p_{n}\right) q_{n} \\
=p_{n} q_{n-1}+a_{n} p_{n} q_{n}-p_{n-1} q_{n}-a_{n} p_{n} q_{n}=p_{n} q_{n-1}-p_{n-1} q_{n}=-(-1)^{n}=(-1)^{n+1} .
\end{gathered}
$$

So by induction $p_{n-1} q_{n}-p_{n} q_{n-1}=(-1)^{n}$ for all $n \geq 0$.
This proof uses the inductive definition of p_{n+1} and q_{n+1}, that is $p_{n+1}=p_{n-1}+a_{n+1} p_{n}$, and similarly for q_{n+1}. This is what the hint suggested. You should deduce that $p_{n} q_{n+1}-p_{n+1} q_{n}=(-1)^{n+1}$ from the assumption that $p_{n-1} q_{n}-p_{n} q_{n-1}=(-1)^{n}$.

Solutions to Practice Problems

5.

a) Because of the way the continued fraction expansion repeats, we need a number x satisfying

$$
x=\frac{1}{4+x}
$$

that is

$$
x^{2}+4 x-1=0
$$

This implies that

$$
x=-2 \pm \sqrt{5}
$$

Since all continued fractions with positive integers represent positive numbers, we must have $x=-2+\sqrt{5}$.
b) This time we must have

$$
x=\frac{1}{4+\frac{1}{1+x}}=\frac{x+1}{4 x+5} .
$$

So

$$
4 x^{2}+4 x-1=0
$$

and

$$
x=\frac{-2 \pm \sqrt{8}}{4}=\frac{-1 \pm \sqrt{2}}{2}
$$

and again we need to take the positive root. So $x=(-1+\sqrt{2}) / 2$
6.
a) One could use calculus, but it is not necessarily because if $x<y$ then $x^{3}<y^{3}$ and hence $x^{3}+2 x+5<y^{3}+2 y+5$. If using calculus, then $f^{\prime}(x)=3 x^{2}+2>0$ for all $x \in \mathbb{R}$, and hence f is strictly increasing.
b) There are no integer solutions to $f(x)=0$ because $f(-2)=-7$ and $f(-1)=2$. So $f(n)<0$ for all $n \in Z$ with $n \leq-2$ and $f(n)>0$ for all $n \in \mathbb{Z}$ with $n \geq-1$. Suppose

$$
\frac{p^{3}}{q^{3}}+2 \frac{p}{q}+5=0
$$

for $p \in Z$ and $q \in \mathbb{Z}_{+}$. We can assume the g.c.d of p and q is one and then $q \geq 2$ because there are no integer solutions to $f(x)=0$ Then multiplying by q^{3} we have

$$
p^{3}+2 p q^{2}+5 q^{3}=0
$$

This can be rewritten as

$$
p^{3}=-q^{2}(2 p+5 q)
$$

Let k be any prime factor of q. There is at least one because $q \geq 2$. Then $k \mid p^{3}$. Hence by unique factorisation, $k \mid p$ and k is a factor of both p and q, giving a contradiction.
c) The set $A=\left\{x \in \mathbb{Q}: x^{3}+2 x+5<0\right\}$ is a Dedekind cut because it has no maximal element, $0 \notin A$ and $x \in A \wedge y<x \Rightarrow f(y)<f(x)<0 \Rightarrow y \in A$.
7.
a) For $f(x)=x^{3}-12 x+1$,

$$
\begin{gathered}
f(-4)=-15<0, \quad f(-3)=10>0, \quad f(0)=1>0, \quad f(1)=-10<0, \\
f(3)=-8<0, \quad f(4)=15>0 .
\end{gathered}
$$

Applying the intermediate value theorem to f on each of the intervals $[-4,-3],[0,1]$ and $[3,4]$, we see that f has a zero in each of the intervals $(-4,-3),(0,1)$ and $(3,4)$. Also $f^{\prime}(x)=$ $3 x^{2}-12=3\left(x^{2}-4\right)=0 \leftrightarrow x= \pm 2$. Also $f^{\prime}(x)>0$ if $x \in(-\infty,-2) \cup\left[(2, \infty)\right.$ and $f^{\prime}(x)<0$ on $(-2,2)$. So f is strictly increasing on each of the intervals $(-\infty,-2]$ and on $[2, \infty)$, and strictly decreasing on $[-2,2]$. In particular f is strictly increasing on each of the intervals $[-4,-3]$ and $[3,4]$ and strictly decreasing on $[0,1]$. So because of the values of f that have been computed, f must have a zero in each of the intervals $(-4,-3),(3,4)$ and $(0,1)$.
b) The Dedekind cuts can be expressed as

$$
\begin{gathered}
A_{1}=\{x \in \mathbb{Q}: f(x)<0 \wedge x<-3\}, \quad A_{2}=\{x \in \mathbb{Q}: x<-3\} \cup\{x \in \mathbb{Q}: f(x)>0 \wedge x<1\} \\
A_{3}=\{x \in \mathbb{Q}: x<3 \vee f(x)<0\}
\end{gathered}
$$

In each case, $x \in A_{j} \wedge y<x \Rightarrow y \in A_{j}$ and $5 \notin A_{j}$ and A_{j} has no maximal element. Full proof of A_{j} not having a maximal element is not required.

