The proof of the following is from wikipedia on 9 December 2010. See http://en.wikipedia.org/wiki/Transcendental_number and go to section 4 of that article.

Theorem 1. e is transcendental
Proof. Suppose for contradiction that e is algebraic. This means that there is n and there are integers a_{j} for $0 \leq j \leq n$ such that

$$
\begin{equation*}
\sum_{j=0}^{n} a_{j} e^{j}=0 \tag{1}
\end{equation*}
$$

with $a_{0} \neq 0$ and $a_{n} \neq 0$. Now we multiply the equation (1) by I where I is an integral:

$$
I=\int_{0}^{\infty} p(x) e^{-x} d x
$$

where $p(x)$ is a carefully chosen polynomial with integer coefficients. This gives an equation

$$
\begin{equation*}
\sum_{j=0}^{n} a_{j} e^{j} \int_{0}^{\infty} p(x) e^{-x} d x=0 \tag{2}
\end{equation*}
$$

This can be rewritten, by splitting up the integral in different ways, as

$$
\begin{equation*}
\sum_{j=0}^{n} a_{j} e^{j} \int_{j}^{\infty} p(x) e^{-x} d x=-\sum_{j=1}^{n} a_{j} e^{j} \int_{0}^{j} p(x) e^{-x} d x \tag{3}
\end{equation*}
$$

The idea is then to show that the right-hand side of (3) is much smaller than the left-hand side, and so they cannot be equal, which is a contradiction.

The key to the whole argument is the fact that, for any natural number m,

$$
\int_{0}^{\infty} x^{m} e^{-x} d x=m!
$$

This can be proved by induction, starting from the base case $m=0$.
The choice for $p(x)$ is

$$
p(x)=x^{k} \prod_{j=1}^{n}(j-x)^{k+1}
$$

where k is yet to be chosen. Note that the lowest power of x in $p(x)$ is x^{k}. In fact

$$
p(x)=(n!)^{k+1} x^{k}+\sum_{i=k+1}^{k+n+n k} b_{i} x^{i}
$$

for some integers b_{i}. It follows that

$$
\int_{0}^{\infty} p(x) e^{-x} d x=(n!)^{k+1} k!+c_{0}(k+1)!
$$

for some integer c_{0}.

Now we consider the other terms on the left-hand side of (3). If j is an integer with $1 \leq j \leq n$ then

$$
e^{j} \int_{j}^{\infty} p(x) e^{-x} d x=\int_{j}^{\infty} p(x) e^{-(x-j)} d x=\int_{0}^{\infty} p(t+j) e^{-t} d t
$$

But

$$
p(t+j)=(t+j)^{k} \prod_{i=1}^{j-1}(i-j-t)^{k+1}(-t)^{k+1} \prod_{i=j+1}^{n}(i-j-t)^{k+1}
$$

which is a polynomial in which the lowest power of t is t^{k+1}. So, for $1 \leq j \leq n$

$$
\int_{j}^{\infty} p(t+j) e^{-t} d t=c_{j}(k+1)!
$$

for an integer c_{j}. So equation (3), when divided by k !, becomes

$$
\begin{equation*}
a_{0}(n!)^{k+1}+(k+1) \sum_{j=0}^{n} a_{j} c_{j}=-\sum_{j=1}^{n} \frac{a_{j} e^{j}}{k!} \int_{0}^{j} p(x) e^{-x} d x . \tag{4}
\end{equation*}
$$

The left-hand side is an integer which can be made non-zero by choice of k. If we choose $k+1$ to be a prime which is bigger than both n and a_{0} then the left-hand side of (4) is an integer which is not divisible by $k+1$ and so cannot be 0 . So then it suffices to show that the right-hand side of (4) is less than 1 in modulus, if k is sufficiently large. To see this we note that if $0 \leq x \leq n$ then

$$
|p(x)| \leq n^{k} \times n^{n(k+1)}=n^{n} \times\left(n^{n+1}\right)^{k} .
$$

Hence, for $1 \leq j \leq n$,

$$
\left|\frac{1}{k!} \int_{0}^{j} p(x) e^{-x} d x\right| \leq n^{n+1} \frac{\left(n^{n+1}\right)^{k}}{k!}
$$

This tends to 0 as $k \rightarrow \infty$. So the right-hand side of (4) is less than 1 in modulus if k is sufficiently large. This gives the required contradiction.

