MATH104 Exam September 2008, Solutions

All questions except q. 1 are standard homework examples

1. lambda, pi, α, μ. (1 mark each.)
2.

(a) $f(n)=2 n+7$. (3 marks.)
(b) $f(n)=10^{n+1}$. (4 marks.)
(c)

$$
f(n)= \begin{cases}n & \text { if } n \text { is even } \\ -(n+1) & \text { if } n \text { is odd }\end{cases}
$$

(5 marks.)
3.
a) $x^{2}<1$. (2 marks.)
b) $0 \leq x<1$. (The answer ' $x \geq 0$ and $x<1$ ' is also acceptable.) (3 marks.)
c) There exist x, y with $x>y$ and $f(x) \geq f(y)$. (4 marks.)
d) $\forall M \in \mathbb{N}, \exists x \in \mathbb{R}, f(x)>M$. (3 marks.)
4.
(a) $f(x)=5-6 x$ is injective. For let x and y be any real numbers. Then

$$
\begin{aligned}
f(x)=f(y) & \Longrightarrow 5-6 x=5-6 y \\
& \Longrightarrow-6 x=-6 y \\
& \Longrightarrow x=y .
\end{aligned}
$$

(4 marks.)
(b) $f(x)=x^{2}+1$ is not injective. For $f(-1)=f(1)$, but $-1 \neq 1$. (4 marks.)
(c) $f(x)=x^{2}+1, x \geq 0$ is injective. For $f(x)=f(y)$ implies $x^{2}=y^{2}$ and since x and y are ≥ 0 this gives $x=y$. (Or: $(x-y)(x+y)=0$, and $x+y=0$ only when $x=0, y=0$, so $x=y$ in any case.) (6 marks.)
5.
S not closed under addition means that there exist m, n in S such that $m+n$ is not in S. (2 marks.)
(a) S is closed under addition. For let m and n be any elements of S. Then there exist $k, \ell \in \mathbb{Z}$ such that $m=3 k$ and $n=3 \ell$. Then $m+n=3(k+\ell) \in S$, since $k+\ell \in \mathbb{Z}$. (4 marks.)
(b) S is not closed under addition. For $m=30 \in S$ and $n=31 \in S$, but $m+n=61 \notin S$. (4 marks.)
(c) S is closed under addition. For let m and n be any elements of S. Then $m \geq 50$ and $n \geq 50$, so $m+n \geq 100 \geq 50$. (4 marks.)
6.

Context X is a metric space. (1 mark.)
Hypothesis X is complete and X is totally bounded. (1 mark.)
Conclusion X is compact. (1 mark.)
Contrapositive Let X be a metric space. If X is not compact, then X is not complete or X is not totally bounded. (2 marks.)
(a) Nothing. (2 marks.)
(b) X is not complete or X is not totally bounded. (2 marks.)
(c) X is not totally bounded. (3 marks.)
(d) Nothing. (2 marks.)
7.
(a) Let $m, n \in \mathbb{Z}$, and suppose that $7 \mid m$ and $7 \mid n$. Then there exist integers k and ℓ such that $m=7 k$ and $n=7 \ell$. Hence $m+n=7(k+\ell)$ is divisible by 7 as required. (5 marks.)
(b) Let $a, b, c \in \mathbb{Z}$, and suppose that $a \mid b$ and $b \mid c$. Then there exist integers k and ℓ such that $b=k a$ and $c=\ell b$. Hence $c=(\ell k) a$, so that $a \mid c$ as required. (5 marks.)
(c) Let $m, n \in \mathbb{Z}$ and suppose that $7 \mid m$ and $7 \chi(m+n)$. Assume for a contradiction that $7 \mid n$. Then by part (a), $7 \mid(m+n)$. However $7 \chi(m+n)$. This is the required contradiction. $(5$ marks.)
8.
(a) False. (5 is not a perfect square, or: $n^{2} \leq 4$ when $|n| \leq 2$, and $n^{2} \geq 9$ when $|n| \geq 3$.) (3 marks.)
(b) False. ($n=0$ is a counterexample.) (3 marks.)
(c) True. (Given any real number x, take $y=x / 3$.) (3 marks.)
(d) False. $(x=2).(3$ marks.)
(e) False. (Given any $x \in \mathbb{R}$ take $y=x-2$.) (3 marks.)

