MATH104 Exam May 2008, Solutions

All questions except q.1 are standard examples similar to classwork or homework.

1. sigma, psi, ϕ , γ . (1 mark each.)

2.

- (a) f(n) = -1 6n.
- (b) f(n) = 6 + 3n
- (c) $2 \in S$ (take n = 0); $-6 \in S$ (take n = -2); $4 \notin S$ since this would require $n \in \mathbb{N}$ with $n^3 = 2$; $10 \in S$ (take n = 2).

(2 marks for (a), 4 marks for (b) and 6 marks for (c).)

3.

- (a) $x \neq -4$ and $x \leq 2$. The statement (a) has a free variable x. (3 marks)
- (b) There exist real numbers a, b, c such that ab = ac and $b \neq c$. The original statement is false and this negation is true: take a = 0, b = 1, c = 2; then ab = ac = 0 and $b \neq c$. (4 marks)
- (c) There exist x > 1 and y > 2 with $f(x) \le 0$ or $f(y) \le 4$ (3 marks)
- (d) $\exists N \in \mathbb{N}, \forall x \in \mathbb{R}, f(x) \leq N.$ (3 marks)

4.

- (a) f is not injective if there exist x, y in the domain of f such that f(x) = f(y) but $x \neq y$. (2 marks)
- (b) Let $x, y \in \mathbb{R}$ and suppose f(x) = f(y). Then 2 + 4x = 2 + 4y and rearranging gives 4x = 4y so x = y. (3 marks)
- (c) Let x = 0, y = 2. Then f(x) = f(y) = 0 but $x \neq y$. Hence f is not injective. (3 marks)
- (d) Let $x, y \in \mathbb{R}, x > 1, y > 1$, Suppose that f(x) = f(y). Then $x^2 2x = y^2 2y$, which gives $x^2 y^2 2(x y) = 0$, that is (x y)(x + y) 2(x y) = 0, that is (x y)(x + y 2) = 0. But x > 1 and y > 1 so that the second factor is > 0. Hence the first factor is 0, giving x = y. (5 marks)

5.

S closed under addition means that, for all $x \in S$ and $y \in S$, it follows that $x + y \in S$. (1 mark)

For the given S, let $x, y \in S$ so that there exist integers k, ℓ with 3x = k, $3y = \ell$. Thus $3(x+y) = k + \ell$ and since $k + \ell \in \mathbb{Z}$ we deduce that $x + y \in S$. Thus S is closed under addition. (3 marks)

- (a) R is not an equivalence relation. Property (i) fails, since for example 1 R 1 is false. (2 marks)
- (b) R is an equivalence relation. For let x, y, and z be any integers. Then
 - i) x x = 0 and 6|0 since $0 = 0 \times 6$, so x R x.
 - ii) If x R y then x y = 6k, for some $k \in \mathbb{Z}$ so y x = 6(-k), and $-k \in \mathbb{Z}$ so y R x.

iii) If x R y and y R z then x - y = 6k and $y - z = 6\ell$ for some integers k, ℓ so $x - z = (x - y) + (y - z) = 6(k + \ell)$, i.e. x R z.

(4 marks)

(c) R is not an equivalence relation. In this case only property (iii) fails. For example, $0R\frac{1}{2}$ and $\frac{1}{2}R1$ but 0R1 is false since the difference is 1. (4 marks)

6.

m|n means that there exists an integer k with n = km. (1 mark)

- (a) m|0 since 0 = km hold for k = 0. On the other hand, if 0|n then $n = k \times 0 = 0$ no matter what k is. (2 marks)
- (b) Let a, b ∈ Z and suppose 2|a and 4|b. Then a = 2k, b = 4ℓ for integers k, ℓ. Hence 6a + b = 12k + 4ℓ = 4(3k + ℓ) so that 4|(6a + b) as required. (3 marks) The converse is: Let a, b ∈ Z. If 4|(6a + b) then 2|a and 4|b. This is false, for example a = 1, b = 2 satisfy 4|(6a + b) but 2 is not a factor of a. (3 marks)
- (c) The contrapositive of the proposition states that: Let $a, b \in \mathbb{Z}$. If 4 does not divide 6a + b then either 2 does not divide a or 4 does not divide b. Thus given 4 does not divide 6a + b and a is even, we know the first of these conclusions is wrong so the second must hold: 4 does not divide b. (3 marks)
- (d) Suppose for a contradiction that 7a 21b = 29 where $a, b \in \mathbb{Z}$. Then 7(a 3b) = 29 from which it follows that 7|29. However this is false, so we deduce that no such a, b exist. (3 marks)

7.

Context X is a T_2 space. (1 mark)

Hypothesis X is first countable and X is countably compact. (1 mark)

Conclusion X is T_3 . (1 mark)

Contrapositive Let X be a T_1 space. If X is not T_3 then X is not first countable or X is not countably compact. (2 marks)

- (a) Nothing: hypothesis of theorem not fully satisfied. (2 marks)
- (b) X is not first countable. From contrapositive, since one half of conclusion is false. (2 marks)
- (c) Nothing further can be deduced since the hypothesis and conclusion of the contrapositive are both true. (2 marks)
- (d) Nothing: this is not the hypothesis of theorem or contrapositive. (2 marks)

However if the converse of the theorem is true then we can deduce that X is not T_3 since the converse says that if X is T_3 then X is both first countable and countably compact. (2 marks)

8.

a) False. $(x = 0 \text{ gives } x^2 = 0.)$ (2 marks)

- b) True. (Take n = -2.) (3 marks)
- c) False. (Take x = -1. Then there is no $y \in \mathbb{R}$ with $y^2 = -1$.) (2 marks)
- d) True. (Take m = -1.) (3 marks)
- e) True. (Take n to be any integer $> \frac{1}{\varepsilon^2}$.) (4 marks.)