For all n,

$$
f(x)=P_{n}(x, a)+R_{n}(x, a) .
$$

Suppose that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} R_{n}(x, a)=0 \tag{1}
\end{equation*}
$$

Then

$$
f(x)=\lim _{n \rightarrow \infty} P_{n}(x, a)
$$

that is,

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} . \tag{2}
\end{equation*}
$$

Now (1), and hence also (2), hold in the following cases.

- $f(x)=e^{x}$, or $f(x)=\sin x$, or $f(x)=\cos x$, for all x and all a, and so (with $a=0$) for all x,

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!},
$$

$$
\begin{aligned}
& \sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!} \\
& \cos x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!}
\end{aligned}
$$

- $f(x)=(1+x)^{\alpha}$ for $a=0$ and $|x|<1$. So for all $|x|<1$,

$$
(1+x)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}
$$

where

$$
\binom{\alpha}{n}=\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n!}
$$

- $f(x)=\ln (1+x)$ for $a=0$ and $-1<x \leq 1$. So for all $-1<x \leq 1$,

$$
\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}
$$

Properties of Taylor Series
If, for some $r>0$, and all $|x-a|<r$,

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}
$$

then for all n

$$
a_{n}=\frac{\left.f^{(} n\right)(a)}{n!}
$$

and

$$
\sum_{n=0}^{\infty} a_{n}(x-a)^{n}
$$

is the Taylor series of f at a.

Integration

If $P_{n}(x, a)$ is the Taylor polynomial of f at a,

$$
\begin{gathered}
\int_{a}^{x} P_{n}(t, a) d t=\int_{a}^{x} \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(t-a)^{k} d t \\
=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{(k+1)!}(x-a)^{k+1}
\end{gathered}
$$

So if

$$
\lim _{n \rightarrow \infty} \int_{a}^{x} R_{n}(t, a) d t=0
$$

then

$$
\int_{a}^{x} f(t) d t=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{(k+1)!}(x-a)^{k+1}
$$

This is true, for example, if $|x-a|<R$ and

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

for all $|x-a|<R$.

