Notes for 21-24 January 2008: Taylor Polynomials and Taylor Series
Suppose that, for all x,

$$
f(x)=a_{0}+a_{1}(x-a)+\cdots+a_{n}(x-a)^{n}
$$

Putting $x=a$,

$$
f(a)=a_{0} .
$$

Differentiating,

$$
f^{\prime}(x)=a_{1}+2 a_{2}(x-a)+\cdots+n a_{n}(x-a)^{n-1} .
$$

Putting $x=a$,

$$
f^{\prime}(a)=a_{1} .
$$

Differentiating,

$$
f^{\prime \prime}(x)=2 a_{2}+6 a_{3}(x-a)+\cdots+n(n-1) a_{n}(x-a)^{n-2} .
$$

Putting $x=a$,

$$
\frac{f^{\prime \prime}(a)}{2}=a_{2}
$$

Differentiating,

$$
\begin{aligned}
& f^{(3)}(x)=6 a_{3}+(4 \times 3 \times 2) a_{4}(x-a) \\
& +\cdots+n(n-1)(n-2) a_{n}(x-a)^{n-3} .
\end{aligned}
$$

Putting $x=a$,

$$
\frac{f^{(3)}(a)}{3!}=a_{3} .
$$

... In general,

$$
\frac{f^{(k)}(a)}{k!}=a_{k}
$$

and so assuming that f is a polynomial of degree $\leq n$,

$$
\begin{gathered}
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \\
=f(a)+f^{\prime}(a)(x-a)+\cdots \frac{f^{(n)}(a)}{n!}(x-a)^{n} .
\end{gathered}
$$

So it is natural to assume, under suitable conditions, that for a general function f which is n-times differentiable, for x near a,

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)+\cdots \frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

The first approximation, for $n=1$, is certainly true, because by the definition of derivative, for x near a,

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)
$$

The n 'th Taylor polynomial $P_{n}(x)$ of f at a (or more correctly, $P_{n}(x, a)$) is given by

$$
\begin{gathered}
P_{n}(x)=\sum_{k=0}^{n} f^{(k)}(a) \frac{(x-a)^{k}}{k!} \\
=f(a)+f^{\prime}(a)(x-a)+\cdots \frac{f^{(n)}(a)}{n!}(x-a)^{n} .
\end{gathered}
$$

The Taylor series of f at a is

$$
\begin{gathered}
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \\
=f(a)+f^{\prime}(a)(x-a)+\cdots \frac{f^{(k)}(a)}{k!}(x-a)^{k}+\cdots
\end{gathered}
$$

This is a formal power series. It may not converge for any x - although in many cases it does.

The Remainder Term

For any function f which is $n+1$-times continuously differentiable on the closed interval between x and a,

$$
\begin{equation*}
f(x)=P_{n}(x, a)+\frac{1}{n!} \int_{a}^{x}(x-t)^{n} f^{(n+1)}(t) d t . \tag{1}
\end{equation*}
$$

So

$$
\begin{gathered}
f(x)=P_{n}(x, a)+\frac{f^{(n+1)}(c)}{(n)!} \int_{a}^{x}(x-t)^{n} d t \\
f(x)=P_{n}(x, a)+\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
\end{gathered}
$$

for some c between x and a. The term

$$
R_{n}(x, a)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

is called the remainder term and is often written just $R_{n}(x)$. So

$$
f(x)=P_{n}(x, a)+R_{n}(x, a)
$$

(1) can be proved by induction because by integration by parts

$$
\begin{gathered}
\frac{1}{n!} \int_{a}^{x}(x-t)^{n} f^{(n+1)}(t) d t \\
=-\frac{f^{n}(a)}{n!}(x-a)^{n}+\frac{1}{(n-1)!} \int_{a}^{x}(x-t)^{n-1} f^{(n)}(t) d t .
\end{gathered}
$$

