All questions are similar to homework problems.

MATH102 Solutions September 2007

Section A

1. The Taylor series of

$$
f(x)=x^{-1}=(3+(x-3))^{-1}=3^{-1}(1+(x-3) / 3)^{-1}
$$

is

$$
\frac{1}{3}-\frac{x-3}{9}+\frac{(x-3)^{2}}{27}-\frac{(x-3)^{3}}{81} \cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-3)^{n}}{3^{n+1}}
$$

This can also be worked out by computing all derivatives of f at $x=3$.
[3 marks]
a) When $x=0$ the series is not convergent.
[1 mark]
b) When $x=4$ the series is convergent (to $f(4)=\frac{1}{4}$). [1 mark]

No explanation is required in a) or b).
$5=3+1+1$ marks

2(i) Separating the variables, we have

$$
\begin{gathered}
\int e^{y} d y=\int x^{2} d x \\
e^{y}=\frac{x^{3}}{3}+C
\end{gathered}
$$

Putting $x=1$ and $y=0$ gives

$$
1=\frac{1}{3}+C
$$

or $C=\frac{2}{3}$. So we obtain

$$
y=\ln \left(\frac{x^{3}+2}{3}\right)
$$

It is acceptable to leave the answer in the form $e^{y}=\left(x^{3}+3\right) / 3$.
2(ii) Using the integrating factor method, putting the equation in standard form, we have

$$
\frac{d y}{d x}+\frac{2}{x} y=\frac{3}{x}
$$

The integrating factor is

$$
\exp \left(\int(2 / x) d x\right)=e^{2 \ln x}=x^{2}
$$

So the equation becomes

$$
\frac{d}{d x}\left(y x^{2}\right)=3 x
$$

Integrating gives

$$
x^{2} y=\int 3 x d x=\frac{3}{2} x^{2}+C .
$$

So the general solution is

$$
y=\frac{3}{2}+C x^{-2}
$$

Putting $y(1)=0$ gives $C=-\frac{3}{2}$ and

$$
y=\frac{3}{2}-\frac{3}{2} x^{-2}
$$

3 marks for (i) 5 marks for (ii).
[8 marks]
3. Try $y=e^{r} x$. Then

$$
r^{2}-4 r+3=0 \Rightarrow(r+3)(r+1)=0 \Rightarrow r=-3 \text { or } r=-1
$$

So the general solution is

$$
y=A e^{-3 x}+B e^{-x}
$$

[2 marks]
So $y^{\prime}=-3 A e^{-3 x}+-B e^{-x}$ and the initial conditions $y(0)=2, y^{\prime}(0)=1$ give

$$
A+B=2, \quad-3 A-B=1 \Rightarrow-2 A=3, B=2-A \Rightarrow A=-\frac{3}{2}, B=\frac{7}{2}
$$

So

$$
y=-\frac{-3}{2} e^{-3 x}+\frac{7}{2} e^{-x}
$$

[3 marks]
$[2+3=5$ marks $]$
4. We have

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(0,0), y=0} \frac{x y+2 x^{2}}{x^{2}+x y+y^{2}}=\lim _{x \rightarrow 0} \frac{2 x^{2}}{x^{2}}=2, \\
& \lim _{(x, y) \rightarrow(0,0), x=0} \frac{x y+2 x^{2}}{x^{2}+x y+y^{2}}=\lim _{x \rightarrow 0} \frac{0}{y^{2}}=0 .
\end{aligned}
$$

So the limits along two different lines as $(x, y) \rightarrow(0,0)$ are different, and the overall limit does not exist.
[4 marks]
5.

$$
\begin{gathered}
\frac{\partial f}{\partial x}=12 x^{2} y-4 y^{3} \\
\frac{\partial f}{\partial y}=4 x^{3}-12 x y^{2} \\
\frac{\partial^{2} f}{\partial x^{2}}=24 x y \\
\frac{\partial^{2} f}{\partial y \partial x}=12 x^{2}-12 y^{2}, \\
\frac{\partial^{2} f}{\partial x \partial y}=12 x^{2}-12 y^{2}
\end{gathered}
$$

so that these last two are equal, and

$$
\frac{\partial^{2} f}{\partial y^{2}}=-24 x y
$$

So we also have

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

as required.[5 marks]
6. We have

$$
\begin{gathered}
\frac{\partial f}{\partial x}=-y z \sin (x y z), \\
\frac{\partial f}{\partial y}=2 y z-x z \sin (x y z), \\
\frac{\partial f}{\partial z}=y^{2}-x y \sin (x y z)
\end{gathered}
$$

[3 marks]
By the Chain Rule,

$$
\frac{d F}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}
$$

So

$$
\begin{gathered}
\frac{d F}{d t}(0)=\frac{\partial f}{\partial x}(2,-1,0)+\frac{\partial f}{\partial y}(2,-1,0)-\frac{\partial f}{\partial z}(2,-1,0) \\
=0+0-1=-1 .
\end{gathered}
$$

[2 marks]
$[3+2=5$ marks $]$
7. For

$$
f(x, y, z)=\frac{x+y+z}{x^{2}+y^{2}+z^{2}}
$$

we have

$$
\begin{gathered}
\nabla f(x, y, z)=\left(\frac{1}{x^{2}+y^{2}+z^{2}}-\frac{2 x(x+y+z)}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}\right) \mathbf{i} \\
+\left(\frac{1}{x^{2}+y^{2}+z^{2}}-\frac{2 y(x+y+z)}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}\right) \mathbf{j}+\left(\frac{1}{x^{2}+y^{2}+z^{2}}-\frac{2 z(x+y+z)}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}\right) \mathbf{k}
\end{gathered}
$$

So

$$
\nabla f(1,1,1)=\left(\frac{1}{3}-\frac{6}{9}\right)(\mathbf{i}+\mathbf{j}+\mathbf{k})=-\frac{1}{3}(\mathbf{i}+\mathbf{j}+\mathbf{k})
$$

3 marks
The derivative of f in the direction $\mathbf{i}-2 \mathbf{j}-2 \mathbf{k}$ is

$$
\frac{\nabla f(1,1,1) \cdot(\mathbf{i}-2 \mathbf{j}-2 \mathbf{k})}{\sqrt{1+(-2)^{2}+(-2)^{2}}}=-\frac{1}{3} \times \frac{-3}{3}=\frac{1}{3}
$$

[2 marks]
$[3+2=5$ marks.]
8. For

$$
f(x, y)=x^{2}+x y^{2}-4 x y-5 x
$$

we have

$$
\frac{\partial f}{\partial x}=2 x+y^{2}-4 y-5 \quad \frac{\partial f}{\partial y}=2 x y-4 x
$$

[2 marks]
So at a stationary point,

$$
\begin{gathered}
2 x+y^{2}-4 y-5=2 x(y-2)=0 \\
\Leftrightarrow(x, y)=(9 / 2,2) \text { or }(0,-1) \text { or }(0,5) .
\end{gathered}
$$

[2 marks]

$$
A=\frac{\partial^{2} f}{\partial x^{2}}=2, B=\frac{\partial^{2} f}{\partial y \partial x}=2 y-4, C=\frac{\partial^{2} f}{\partial y^{2}}=2 x
$$

For $(x, y)=(9 / 2,2) A=2, B=0$ and $C=9$. So $A C-B^{2}>0 A>0$ and $(9 / 2,2)$ is a local minimum.

For $(x, y)=(0,-1)$, we have $A=2, B=-6, C=0$. So $A C-B^{2}<0$, and $(0,-1)$ is a saddle.

For $(x, y)=(0,5)$, we have $A=2, B=6, C=0$. So $A C-B^{2}<0$, and $(0,5)$ is again a saddle.
[4 marks]
$[2+2+4=8$ marks $]$
9. For

$$
f(x, y)=\frac{1}{2 x^{2}-y^{2}}
$$

we have

$$
\frac{\partial f}{\partial x}=\frac{-4 x}{\left(2 x^{2}-y^{2}\right)^{2}}, \quad \frac{\partial f}{\partial y}=\frac{2 y}{\left(2 x^{2}-y^{2}\right)^{2}}
$$

So

$$
f(1,1)=1, \quad \frac{\partial f}{\partial x}(1,1)=-4, \quad \frac{\partial f}{\partial y}(1,1)=2
$$

So the linear approximation is

$$
1-4(x-1)+2(y-1)
$$

[It would be acceptable to realise that

$$
\begin{aligned}
& f(x, y)=\left(1+4(x-1)+2(x-1)^{2}-2(y-1)-(y-1)^{2}\right)^{-1} \\
& =\left(1+4(x-1)-2(y-1)+2(x-1)^{2}-(y-1)^{2}\right)^{-1}
\end{aligned}
$$

and to expand out.]
[4 marks]
10. The domain of integration is the triangle as shown

This integral can be written as $\int_{0}^{1} \int_{0}^{x} d y d x$ or $\int_{0}^{1} \int_{y}^{1} d x d y$. So we have

$$
\begin{gathered}
\int_{0}^{1} \int_{y}^{1} \cos (y / x) d x d y=\int_{0}^{1} \int_{0}^{x} \cos (y / x) d x d y \\
=\int_{0}^{1}[x \sin (y / x)]_{y=0}^{y=x} d x=\int_{0}^{1} x(\sin 1) d x \\
=\left[(\sin 1) \frac{x^{2}}{2}\right]_{0}^{1}=\frac{\sin 1}{2}
\end{gathered}
$$

[6 marks]

Section B

11. (i)

$$
\begin{gathered}
f^{\prime}(y)=\frac{1}{2}(1-y)^{-3 / 2}, \quad f^{\prime \prime}(y)=\frac{3}{4}(1-y)^{-5 / 2}, \quad f^{(3)}(y)=\frac{15}{8}(1-y)^{-7 / 2} \\
f^{(4)}(y)=\frac{105}{16}(1-y)^{-9 / 2}, \quad f^{(5)}(y)=\frac{945}{32}(1-y)^{-11 / 2}
\end{gathered}
$$

[4 marks] So

$$
f^{\prime}(0)=\frac{1}{2}, \quad \frac{f^{\prime \prime}(0)}{2!}=\frac{3}{8}, \quad \frac{f^{(3)}(0)}{3!}=\frac{15}{48}=\frac{5}{16}, \quad \frac{f^{(4)}(0)}{24}=\frac{35}{128} .
$$

So the fourth Taylor polynomial of f at 0 is

$$
1+\frac{1}{2} y+\frac{3}{8} y^{2}+\frac{5}{16} y^{3}+\frac{35}{128} y^{4}
$$

[4 marks
Putting $y=x^{2}$, the ninth Taylor polynomial of g at 0 has only even terms, and so is the same as the eighth Taylor polynomial, and is obtained by putting $y=x^{2}$ in the above, so that it is

$$
1+\frac{1}{2} x^{2}+\frac{3}{8} x^{4}+\frac{5}{16} x^{6}+\frac{35}{128} x^{8}
$$

[2 marks]
Integrating, the tenth Taylor polynomial of $h(x)=\sin ^{-1}(x)$ at 0 is

$$
x+\frac{1}{6} x^{3}+\frac{3}{40} x^{5}+\frac{5}{112} x^{7}+\frac{35}{1152} x^{9} .
$$

[2 marks]
(ii) We have Now

$$
R_{4}(y, 0)=\frac{f^{(5)}(c)}{5!} y^{n+1}=\frac{315}{1280}(1-c)^{-11 / 2} y^{n+1}
$$

for some c between 0 and y. Since $c \leq \frac{1}{4}, 1-c \geq \frac{3}{4}$ and $(1-c)^{-11 / 2} \leq$ $(4 / 3)^{11 / 2}$. So

$$
\left\lvert\, R_{n}(y, 0) \leq \frac{945}{5!\times 32} \frac{4^{11 / 2}}{3^{11 / 2}} y^{5}=\frac{63}{256} \frac{4^{11 / 2}}{3^{11 / 2}} y^{5}\right.
$$

[3 marks]
$[4+4+2+2+3=15$ marks $]$
12. For the complementary solution in both cases, if we try $y=e^{r x}$ we need

$$
r^{2}+4 r-5=(r+5)(r-1)=0
$$

that is, $r=-5$ or 1 . So the complementary solution is $A e^{-5 x}+B e^{x}$.
[3 marks]
(i) We try $y_{p}=C e^{-x}$. Then $y_{p}^{\prime}=-C e^{-x}$ and $y_{p}^{\prime \prime}=C e^{-x}$. So $y_{p}^{\prime \prime}+4 y_{p}^{\prime}-5 y_{p}=$ $-8 C$. So $C=-\frac{1}{2}$ So the general solution is

$$
y=A e^{-5 x}+B e^{x}-\frac{1}{2} e^{x}
$$

[2 marks]
This gives

$$
y^{\prime}=-5 A e^{5 x}+B e^{x}+f r a c 12 e^{x} .
$$

So putting $x=0$, the boundary conditions give
$A+B-\frac{1}{2}=1, \quad-5 A+B+\frac{1}{2}=-1 \Rightarrow 6 A=3, \quad B=\frac{3}{2}-A \Rightarrow A=\frac{1}{2}, \quad B=1$.
So the solution is

$$
y=\frac{1}{2} e^{-5 x}+e^{x}-\frac{1}{2} e^{-x}
$$

[3 marks]
(ii) We try $y_{p}=C x^{2}+D x+E$. Then $y_{p}^{\prime}(x)=2 C x+D$ and $y_{p}^{\prime \prime}=2 C$. So

$$
y_{p}^{\prime \prime}+4 y_{p}^{\prime}-5 y_{p}=(2 C+4 D-5 E)+x(8 C-5 D)-5 C x^{2}=-5 x^{2}+3 x+1
$$

Comparing coefficients, we obtain

$$
-5 C=-5, \quad 8 C-5 D=3, \quad 2 C+4 D-5 E=1
$$

So

$$
C=1, \quad D=1, \quad E=1
$$

So the general solution is

$$
A e^{-5 x}+B e^{x}+x^{2}+x+1
$$

[4 marks] This gives

$$
y^{\prime}(x)=-5 A e^{-5 x}+B e^{x}+2 x+1
$$

So putting $x=0$, the boundary conditions give $B=$ $A+B+1=1, \quad-5 A+B+1=-1 \Rightarrow A=-B, \quad 6 A=-2 \Rightarrow A=-\frac{1}{3}, \quad B=\frac{1}{3}$.

So

$$
y=-\frac{1}{3} e^{-5 x}+\frac{1}{3} e^{x}+x^{2}+x+1
$$

[3 marks]
$[3+2+3+4+3=15$ marks $]$

13a)
We have

$$
\begin{gathered}
\nabla f=y \mathbf{i}+(x-1) \mathbf{j} \\
\nabla g=2 x \mathbf{i}+6 y \mathbf{j}
\end{gathered}
$$

[2 marks]
At a stationary point of f we have

$$
y=x-1=0 \Rightarrow(x, y)=(1,0)
$$

This is in the set where $g(x, y)<3$. (The point is easily seen to be a saddle and so cannot be a maximum of minimum of f on the set where $g \leq 6$, but we shall not use this.)
[2 marks]
At a stationary point of f on $g=3$, we have $\nabla f=\lambda g$, that is,

$$
y=2 x \lambda, \quad x-1=6 y \lambda \Rightarrow 3 y^{2}-x(x-1)=0 .
$$

On $g=3$, we have $3 y^{2}=3-x^{2}$, so

$$
-2 x^{2}+x+3=(3-2 x)(1+x)=0
$$

So $x=-1$ or $x=\frac{3}{2}$. So the stationary points of f restricted to $g=3$ are

$$
(-1, \pm \sqrt{2 / 3}), \quad\left(\frac{3}{2}, \pm \frac{1}{2}\right) .
$$

[6 marks]
Now we check the values of f at all these points. We have

$$
\begin{gathered}
f(1,0)=0, \quad f(-1, \sqrt{2 / 3})=-2 \sqrt{2 / 3}, \quad f(-1,-\sqrt{2 / 3})=2 \sqrt{2 / 3} \\
f\left(\frac{3}{2}, \frac{1}{2}\right)=\frac{1}{4}, \quad f\left(\frac{3}{2},-\frac{1}{2}\right)=-\frac{1}{4} .
\end{gathered}
$$

So the minimum value is $-2 \sqrt{2 / 3}$ achieved at $(-1, \sqrt{2 / 3})$ and the maximum value is $2 \sqrt{2 / 3}$, achieved at $(-1,-\sqrt{2 / 3})$.
[5 marks]

$$
[2+2+6+5=15 \text { marks. }]
$$

14a).The region R is as shown.

The weight W is

$$
\int_{0}^{1} \int_{x}^{x+1} x d y d x=\int_{0}^{1} x d x=\left[\frac{x^{2}}{2}\right]_{0}^{1}=\frac{1}{2}
$$

[5 marks]
14b) Then

$$
\begin{aligned}
& \bar{x}=\frac{1}{W} \int_{0}^{1} \int_{x}^{x+1} x^{2} d y d x \\
= & 2 \int_{0}^{1} x^{2} d x=2\left[\frac{x^{3}}{3}\right]_{0}^{1}=\frac{2}{3}
\end{aligned}
$$

[5 marks]

$$
\begin{gathered}
\bar{y}=\frac{1}{W} \int_{0}^{1} \int_{x}^{x+1} x y d y d x \\
=2 \int_{0}^{1} x\left[\frac{y^{2}}{2}\right]_{x}^{x+1} d x=\int_{0}^{1}\left(2 x^{2}+x\right) d x \\
=\left[\frac{2 x^{3}}{3}+\frac{x}{2}\right]_{0}^{1}=\frac{7}{6}
\end{gathered}
$$

So

$$
(\bar{x}, \bar{y})=\left(\frac{2}{3}, \frac{7}{6}\right)
$$

[5 marks]
[$3 \times 5=15$ marks.]

