All questions are similar to homework problems. A question similar to 13 will be set for revision.

MATH102 Solutions May 2008 Section A

1. The Taylor series at 2 of

$$
f(x)=\ln (x)=\ln (2+(x-2))=\ln 2+\ln (1+(x-2) / 2)
$$

is
$\ln 2+\frac{x-2}{2}-\frac{(x-2)^{2}}{8}+\frac{(x-2)^{3}}{24}-\frac{(x-2)^{4}}{64}+\cdots=\ln 2+\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(x-2)^{n}}{2^{n} n}$.
This can also be worked out by computing all derivatives of f at $x=2$.
[3 marks]
a) When $x=1$ the series is convergent.
[1 mark]
b) When $x=4$ the series is also convergent.
[1 mark]
No explanation is required in a) or b).
$5=3+1+1$ marks

2(i) Separating the variables, we have

$$
\begin{aligned}
\int \frac{d y}{y^{2}} & =-\int 2 x d x \\
-\frac{1}{y} & =-x^{2}+C
\end{aligned}
$$

Putting $x=0$ and $y=1$ gives $C=-1$. So we obtain

$$
y=\frac{1}{1+x^{2}}
$$

2(ii) Using the integrating factor method, the standard form is

$$
\frac{d y}{d x}-\frac{2}{x} y=x
$$

the integrating factor is

$$
\exp \left(\int(-2 / x) d x\right)=e^{-2 \ln x}=x^{-2}
$$

So the equation becomes

$$
x^{-2} \frac{d y}{d x}-2 x^{-3} y=\frac{d}{d x}\left(y x^{-2}\right)=x^{-1}
$$

Integrating gives

$$
y x^{-2}=\int x^{-1} d x=\ln x+C
$$

So the general solution is

$$
y=x^{2} \ln x+C x^{2}
$$

Putting $y(1)=1$ gives $1=C$ and

$$
y=x^{2} \ln x+x^{2}
$$

3 marks for (i) 4 marks for (ii).
[7 marks]
3. Try $y=e^{r x}$. Then

$$
r^{2}+2 r+5=0 \Rightarrow r=-1 \pm 2 i
$$

So the general solution is

$$
y=e^{-x}(A \cos 2 x+B \sin 2 x)
$$

[2 marks]
So $y^{\prime}=e^{-x}(-A \cos 2 x-B \sin 2 x-2 A \sin 2 x+2 B \cos 2 x)$ and the initial conditions $y(0)=1, y^{\prime}(0)=5$ give

$$
A=1, \quad 2 B-A=5 \Rightarrow A=1, B=3
$$

So

$$
y=e^{-x}(\cos 2 x+3 \sin 2 x) .
$$

[3 marks]
[2+3=5 marks]
4. We have, for example,

$$
\begin{array}{r}
\lim _{(x, y) \rightarrow(0,0), x=0} \frac{x y^{3}}{x^{4}+y^{4}+x^{2} y^{2}}=\lim _{x \rightarrow 0} \frac{0}{y^{4}}=0, \\
\lim _{(x, y) \rightarrow(0,0), y=x} \frac{x y^{3}}{x^{4}+y^{4}+x^{2} y^{2}}=\lim _{x \rightarrow 0} \frac{x^{4}}{3 x^{4}}=\frac{1}{3} .
\end{array}
$$

So the limits along two different lines as $(x, y) \rightarrow(0,0)$ are different, and the overall limit does not exist.
[4 marks]
5.

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =-2 x \sin \left(x^{2}-y^{2}\right) \\
\frac{\partial f}{\partial y} & =2 y \sin \left(x^{2}-y^{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
\frac{\partial^{2} f}{\partial x^{2}}=-2 \sin \left(x^{2}-y^{2}\right)-4 x^{2} \cos \left(x^{2}-y^{2}\right) \\
\frac{\partial^{2} f}{\partial y \partial x}=4 x y \cos \left(x^{2}-y^{2}\right) \\
\frac{\partial^{2} f}{\partial x \partial y}=4 x y \cos \left(x^{2}-y^{2}\right)
\end{gathered}
$$

so that these last two are equal, and

$$
\frac{\partial^{2} f}{\partial y^{2}}=2 \sin \left(x^{2}-y^{2}\right)-4 y^{2} \cos \left(x^{2}-y^{2}\right)
$$

So we also have

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=-4\left(x^{2}+y^{2}\right) \cos \left(x^{2}-y^{2}\right)=-4\left(x^{2}+y^{2}\right) f
$$

as required.[6 marks]
6. We have

$$
\begin{aligned}
& \frac{\partial f}{\partial u}=3 u^{2}+3 v^{2} \\
& \frac{\partial f}{\partial v}=6 v u-2 v
\end{aligned}
$$

[2 marks]
By the Chain Rule,

$$
\frac{\partial F}{\partial x}=\frac{\partial f}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial f}{\partial v} \frac{\partial v}{\partial x}
$$

So

$$
\begin{gathered}
\frac{\partial F}{\partial x}(0,0)=\frac{\partial f}{\partial u}(1,2) \times(-2)+\frac{\partial f}{\partial v}(1,2) \times(-1) \\
15 \times(-2)+8 \times(-1)=-38
\end{gathered}
$$

[3 marks]
$[2+3=5$ marks $]$
7. For

$$
f(x, y, z)=y^{3}-x^{2} z^{2}+2 x y z
$$

we have

$$
\nabla f(x, y, z)=\left(-2 x z^{2}+2 y z\right) \mathbf{i}+\left(3 y^{2}+2 x z\right) \mathbf{j}+\left(2 x y-2 x^{2} z\right) \mathbf{k}
$$

So

$$
\nabla f(2,1,1)=-2 \mathbf{i}+7 \mathbf{j}-4 \mathbf{k}
$$

[2 marks]

The tangent plane at $(2,1,1)$ is

$$
\nabla f(2,1,1) \cdot((x-2) \mathbf{i}+(y-1) \mathbf{j}+(z-1) \mathbf{k})=0
$$

that is

$$
-2(x-2)+7(y-1)-4(z-1)=0
$$

or

$$
-2 x+7 y-4 z+1=0
$$

[2 marks]
$[2+2=4$ marks.]
8. For

$$
f(x, y)=2 x^{3}+9 y+6 y^{2}+y^{3}-3 x^{2} y
$$

we have

$$
\frac{\partial f}{\partial x}=6 x^{2}-6 x y=6 x(x-y), \quad \frac{\partial f}{\partial y}=9+12 y+3 y^{2}-3 x^{2}
$$

[2 marks]
So at a stationary point, from the equation for $\frac{\partial f}{\partial x}$ we have $x=0$ or $x=y$ If $x=0$ then the equation for $\frac{\partial f}{\partial y}$ gives

$$
3(3+y)(1+y)=0
$$

that is, $y=-3$ or $y=-1$. If $x=y$ then we obtain

$$
3+4 y=0
$$

that is, $x=y=-\frac{3}{4}$. So the stationary points are

$$
(0,-3),(0,-1),\left(-\frac{3}{4},-\frac{3}{4}\right)
$$

[3 marks]

$$
A=\frac{\partial^{2} f}{\partial x^{2}}=12 x-6 y, B=\frac{\partial^{2} f}{\partial y \partial x}=-6 x, C=\frac{\partial^{2} f}{\partial y^{2}}=12+6 y
$$

For $(x, y)=(0,-3), A=18, B=0$ and $C=-6$. So $A C-B^{2}<0$ and $(0,-3)$ is a saddle.

For $(x, y)=(0,-1)$, we have $A=6, B=0, C=6$. So $A C-B^{2}>0$, and $A>0$ and $(0,-1)$ is a local min.

For $(x, y)=\left(-\frac{3}{4},-\frac{3}{4}\right)$, we have $A=-\frac{9}{2}, B=\frac{9}{2}, C=\frac{15}{2}$. So $A C-B^{2}<0$, and $\left(-\frac{3}{4},-\frac{3}{4}\right)$ is a saddle.
[5 marks]
$[2+3+5=10$ marks $]$
9. For

$$
f(x, y)=\left(2 x^{2}+y^{2}\right)^{1 / 2}
$$

we have

$$
\frac{\partial f}{\partial x}=2 x\left(2 x^{2}+y^{2}\right)^{-1 / 2}, \quad \frac{\partial f}{\partial y}=y\left(2 x^{2}+y^{2}\right)^{-1 / 2}
$$

So

$$
f(1,1)=\sqrt{3}, \quad \frac{\partial f}{\partial x}(1,1)=\frac{2}{\sqrt{3}}, \quad \frac{\partial f}{\partial y}(1,1)=\frac{1}{\sqrt{3}} .
$$

So the linear approximation is

$$
\sqrt{3}+\frac{2}{\sqrt{3}}(x-1)+\frac{1}{\sqrt{3}}(y-1)
$$

[It would be acceptable to realise that

$$
\begin{aligned}
& f(x, y)=\left(3+4(x-1)+2(x-1)^{2}+2(y-1)+(y-1)^{2}\right)^{1 / 2} \\
& =\sqrt{3}\left(1+\frac{4}{3}(x-1)+\frac{2}{3}(y-1)+\frac{2}{3}(x-1)^{2}+\frac{1}{3}(y-1)^{2}\right)^{-1}
\end{aligned}
$$

and to expand out.]
[4 marks]
10. Using polar coordinates, $r d r d \theta=d x d y$ and $x^{2}+y^{2}=r^{2}$ This integral can be written as

$$
\begin{gathered}
\int_{0}^{2 \pi} \int_{0}^{1} r \sin \left(\pi r^{2}\right) d r d \theta=2 \pi\left[-\frac{1}{2 \pi} \cos \left(\pi r^{2}\right)\right]_{0}^{1} \\
-\frac{2 \pi}{2 \pi}(-1-1)=2
\end{gathered}
$$

[5 marks]

Section B

11. (i) The Maclaurin series of f is

$$
x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}
$$

[2 marks]
The fourth Taylor polynomial is

$$
x-\frac{x^{3}}{6}
$$

[1 mark]
(ii) We have $f^{\prime}(x)=\cos x, f^{\prime \prime}(x)=-\sin x, f^{(3)}(x)=-\cos x, f^{(4)}(x)=f(x)=$ $\sin x$ and $f^{(5)}(x)=f^{\prime}(x)=\cos x$ So the remainder term

$$
R_{4}(x, 0)=(\cos c) \frac{x^{5}}{5!}
$$

for some c between 0 and x. Since $|\cos c| \leq 1$ for all c we obtain

$$
\left|R_{4}(x, 0)\right| \leq \frac{|x|^{5}}{5!}
$$

[3 marks.] So

$$
\begin{aligned}
& \left|\int_{0}^{1} R_{4}\left(t^{2}, 0\right) d t\right| \leq \int_{0}^{1}\left|R_{4}\left(t^{2}, 0\right)\right| d t \\
& \leq \int_{0}^{1} \frac{t^{10}}{120} d t=\left[\frac{t^{11}}{1320}\right]_{0}^{1}=\frac{1}{1320}
\end{aligned}
$$

[3 marks]
(iii) We have

$$
\sin \left(x^{2}\right)=P_{4}\left(x^{2}, 0\right)+R_{4}\left(x^{2}, 0\right)
$$

and so

$$
\int_{0}^{1} \sin \left(x^{2}\right) d x=\int_{0}^{1} P_{4}\left(x^{2}, 0\right) d x+\int_{0}^{1} R_{4}\left(x^{2}, 0\right) d x
$$

Now

$$
\begin{aligned}
\int_{0}^{1} P_{4}\left(x^{2}, 0\right) & =\int_{0}^{1}\left(x^{2}-\frac{x^{6}}{6}\right) d x=\left[\frac{x^{3}}{3}-\frac{x^{7}}{42}\right]_{0}^{1} \\
& =\frac{1}{3}-\frac{1}{42}=\frac{13}{42}=0.3095
\end{aligned}
$$

to 4 decimal places. Since $\frac{1}{1320}=0.001$ to 3 decimal places, we have

$$
\int_{0}^{1} \sin \left(x^{2}\right) d x=0.31
$$

to 2 decimal places.
[6 marks]
$2+1+3+3+6=15$ marks.
12. For the complementary solution in both cases, if we try $y=e^{r x}$ we need

$$
r^{2}+4=(r+2 i)(r-2 i)=0
$$

that is, $r= \pm 2 i$. So the complementary solution is

$$
A^{\prime} e^{2 i x}+B^{\prime} e^{-2 i x}=A \cos 2 x+B \sin 2 x
$$

for suitable constants A and B [3 marks]
(i) We try $y_{p}=C x^{2}+D x+E$. Then $y_{p}^{\prime}=2 C x+D$ and $y_{p}^{\prime \prime}=2 C$. So $y_{p}^{\prime \prime}+4 y_{p}=2 C+4\left(C x^{2}+D x+E\right)$. So

$$
2 C+4 E=0, \quad 4 D=-4, \quad 4 C=8
$$

So

$$
D=-1, \quad C=2, \quad E=-1
$$

So the general solution is

$$
y=A \cos 2 x+B \sin 2 x+2 x^{2}-x-1
$$

[3 marks]
This gives

$$
y^{\prime}=-2 A \sin 2 x+2 B \cos 2 x+4 x-1
$$

So putting $x=0$, the boundary conditions give

$$
A-1=2, \quad 2 B-1=1 \Rightarrow A=3, \quad B=1
$$

So the solution is

$$
y=3 \cos 2 x+\sin 2 x+2 x^{2}-x-1
$$

[3 marks]
(ii) We try $y_{p}=C \cos x+D \sin x$. Then $y_{p}^{\prime}(x)=-C \sin x+D \cos x$ and $y_{p}^{\prime \prime}=$ $-C \cos x-D \sin x$. So

$$
y_{p}^{\prime \prime}+4 y_{p}=3 C \cos x+3 D \sin x
$$

Comparing coefficients, we obtain

$$
C=\frac{1}{3}, \quad D=\frac{1}{3} .
$$

So the general solution is

$$
A \cos 2 x+B \sin 2 x+\frac{1}{3}(\cos x+\sin x)
$$

[3 marks] This gives

$$
y^{\prime}(x)=-2 A \sin 2 x+2 B \cos 2 x-\frac{1}{3} \sin x+\frac{1}{3} \cos x
$$

So putting $x=0$, the boundary conditions give

$$
A+\frac{1}{3}=1, \quad 2 B+\frac{1}{3}=3 \Rightarrow A=\frac{2}{3}, \quad B=\frac{4}{3}
$$

So

$$
y=\frac{2}{3} \cos 2 x+\frac{4}{3} \sin 2 x+\frac{1}{3}(\cos x+\sin x)
$$

[3 marks]

$$
[3+3+3+3+3=15 \text { marks }]
$$

13. We have

$$
f(x, y, t)=(x-t)^{2}+(y-2 t)^{2} .
$$

and

$$
g(x, y)=x^{2}-y^{2}
$$

We want to minimise \sqrt{f} subject to $g=1$. This is the same as minimising f subject to $g=1$.

We have

$$
\begin{gathered}
\nabla f=2(x-t) \mathbf{i}+2(y-2 t) \mathbf{j}-(2(x-t)+4(y-2 t)) \mathbf{k} \\
\nabla g=2 x \mathbf{i}-2 y \mathbf{j} .
\end{gathered}
$$

[3 marks]
At a minimum of f subject to $g=1$ we have

$$
\nabla f=\lambda \nabla g
$$

[1 mark]
that is,

$$
\begin{array}{ll}
2(x-t) & =2 x \lambda \\
2(y-2 t) & =-2 y \lambda \\
2(x-t)+4(y-2 t) & =0
\end{array}
$$

From the third equation we obtain

$$
5 t=x+2 y
$$

Then the first two equations can be rewritten as

$$
\begin{array}{lll}
5 x-x-2 y & =4 x-2 y & =5 x \lambda \\
5 y-2 x-4 y & =y-2 x & =-5 y \lambda
\end{array}
$$

So multiplying the first equation by y and the second by x and adding, we obtain

$$
y(4 x-2 y)+x(y-2 x)=-2 y^{2}+5 x y-2 x^{2}=0
$$

[6 marks]
So

$$
2 x^{2}-5 x y+2 y^{2}=(2 x-y)(x-2 y)=0
$$

Combining with $g=x^{2}-y^{2}=1$, if $y=2 x$ we obtain $-3 x^{2}=1$, which is impossible. So we must have $x=2 y$ which yields $3 y^{2}=1$ and $y= \pm 1 / \sqrt{3}$. So we have

$$
(x, y, t)= \pm \frac{1}{\sqrt{3}}\left(2,1, \frac{4}{5}\right)
$$

At both these points

$$
f=\frac{1}{3}\left(\frac{36}{25}+\frac{9}{25}\right)=\frac{9}{15}=\frac{3}{5}
$$

So the minimum distance is $\sqrt{3 / 5}$.
[5 marks]
$[1+3+6+5=15$ marks $]$

14a).The region R is as shown. The two parabolas cross at the points $(\pm 1,1)$

[3 marks]
14b) The area is

$$
\begin{aligned}
& \int_{-1}^{1} \int_{2 x^{2}}^{x^{2}+1} d y d x=\int_{-1}^{1}\left(1-x^{2}\right) d x \\
& =\left[x-\frac{x^{3}}{3}\right]_{-1}^{1}=2\left(1-\frac{1}{3}\right)=\frac{4}{3}
\end{aligned}
$$

[4 marks]
14c) By symmetry $\bar{x}=0$. This answer will be accepted If this needs any confirmation

$$
\begin{gathered}
\bar{x}=\frac{3}{4} \int_{R} x d y d x=\frac{3}{4} \int_{-1}^{1} x \int_{2 x^{2}}^{x^{2}+1} d y d x \\
=\frac{3}{4} \int_{-1}^{1}\left(x-x^{3}\right) d x
\end{gathered}
$$

Since the integrand is odd, it is clear that the integral will be 0 .
[2 marks]
For \bar{y},

$$
\bar{y}=\frac{3}{4} \int_{R} y d y d x=\frac{3}{4} \int_{-1}^{1} \int_{2 x^{2}}^{x^{2}+1} y d y d x
$$

$$
\begin{gathered}
=\frac{3}{4} \int_{-1}^{1}\left[\frac{y^{2}}{2}\right]_{2 x^{2}}^{x^{2}+1}=\frac{3}{4} \int_{-1}^{1} \frac{1}{2}\left(x^{4}+2 x^{2}+1-4 x^{4}\right) d x \\
=\frac{3}{8}\left[-\frac{3}{5} x^{5}+\frac{2}{3} x^{3}+x\right]_{-1}^{1}=\frac{3}{4}\left(-\frac{3}{5}+\frac{5}{3}\right) \\
=\frac{4}{5}
\end{gathered}
$$

[6 marks]
$[3+4+2+6=15$ marks. $]$

