# THE UNIVERSITY of LIVERPOOL 

## SECTION A

1. Write down the Taylor series about $x=3$ for the function

$$
f(x)=x^{-1}
$$

State whether this Taylor series converges to $f(x)$ for:
a) $x=0$,
b) $x=4$.
[5 marks]
2. Find the solutions of the following differential equations:
(i) $e^{y} \frac{d y}{d x}=x^{2}$ with $y(1)=0$,
(ii) $x \frac{d y}{d x}+2 y=3$ with $y(1)=0$.
3. Solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+3 y=0
$$

with the initial conditions $y(0)=2, y^{\prime}(0)=1$.
4. Show, by taking limits along two different paths to the origin $(0,0)$, that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y+2 x^{2}}{x^{2}+x y+y^{2}}
$$

does not exist.
[4 marks]

# THE UNIVERSITY of LIVERPOOL 

5. Work out all first and second partial derivatives of

$$
f(x, y)=4 x^{3} y-4 x y^{3}
$$

and verify that

$$
\begin{gathered}
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x} \\
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
\end{gathered}
$$

6. Suppose that $x=x(t), y=y(t)$, and $z=z(t)$ are functions of $t$ such that

$$
x(0)=2, \quad y(0)=-1, \quad z(0)=0
$$

Suppose that the derivatives satisfy

$$
x^{\prime}(0)=y^{\prime}(0)=1, \quad z^{\prime}(0)=-1
$$

Then work out

$$
\frac{d F}{d t}(0)
$$

where $F(t)=f(x(t), y(t), z(t))$, and

$$
f(x, y, z)=y^{2} z+\cos (x y z) .
$$

7. Find the gradient vector $\nabla f(1,1,1)$, where

$$
f(x, y, z)=\frac{x+y+z}{x^{2}+y^{2}+z^{2}} .
$$

Find also the derivative of $f$ in the direction $\mathbf{i}-2 \mathbf{j}-2 \mathbf{k}$ at $(1,1,1)$. [5 marks]
8. Locate and classify all stationary points of the function

$$
f(x, y)=x^{2}+x y^{2}-4 x y-5 x .
$$

# THE UNIVERSITY of LIVERPOOL 

9. Find the linear approximation near $(x, y)=(1,1)$ to the function

$$
f(x, y)=\frac{1}{2 x^{2}-y^{2}}
$$

[4 marks]
10. By changing the order of integration, compute

$$
\int_{0}^{1} \int_{y}^{1} \cos (y / x) d x d y
$$

[6 marks]

## SECTION B

11. 

In this question, let

$$
f(y)=(1-y)^{-1 / 2}, \quad g(x)=\left(1-x^{2}\right)^{-1 / 2}, \quad h(x)=\sin ^{-1}(x)
$$

(i) Compute the first five derivatives of $f$. Write down the 4'th Taylor polynomial of $f$ at 0 . Hence, or otherwise, compute the 9th and 10th Taylor polynomials respectively of $g$ and $h$, at 0 .
(ii) Show that if $0 \leq y \leq \frac{1}{4}$, the 4th remainder term $R_{4}(y, 0)$ of $f$ at 0 satisfies

$$
\left|R_{4}(y, 0)\right| \leq \frac{63}{256} \cdot \frac{4^{11 / 2}}{3^{11 / 2}} y^{5}
$$

12. Solve the following differential equations with the given boundary conditions:
(i)

$$
y^{\prime \prime}+4 y^{\prime}-5 y=4 e^{-x}
$$

with $y(0)=1, y^{\prime}(0)=-1$.
(ii)

$$
y^{\prime \prime}+4 y^{\prime}-5 y=-5 x^{2}+3 x+1
$$

with $y(0)=1, y^{\prime}(0)=-1$.

# THE UNIVERSITY of LIVERPOOL 

13. Find the maximum and minimum values of the function $f(x, y)$ in the region where $g(x, y) \leq 3$, where $f(x, y)$ and $g(x, y)$ are defined by

$$
\begin{gathered}
f(x, y)=x y-y \\
g(x, y)=x^{2}+3 y^{2}
\end{gathered}
$$

[15 marks]
14.
a) Find the weight of the parallelogram $R$ bounded by $y=x, x=0$, $y=x+1$ and $x=1$, where the density function is $\rho(x, y)=x$
b) Find the centre of mass $(\bar{x}, \bar{y})$ of $R$.
[15 marks]

