MATH102

Examiner: Prof. S.M. Rees, Extension 44063.

Time allowed: Two and a half hours

Answer all of Section A and THREE questions from Section B. The marks shown against questions, or parts of questions, indicate their relative weight. Section A carries 55% of the available marks.

SECTION A

1. Write down the Taylor series about $x=2$ for the function

$$
f(x)=\ln x
$$

State whether this Taylor series converges to $f(x)$ for:
a) $x=1$,
b) $x=4$.
[5 marks]
2. Find the solutions of the following differential equations:
(i) $\frac{d y}{d x}+2 x y^{2}=0$ with $y(0)=1$,
(ii) $x \frac{d y}{d x}-2 y=x^{2}$ with $y(1)=1$.
[7 marks]
3. Solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+5 y=0
$$

with the initial conditions $y(0)=1, y^{\prime}(0)=5$.
[5 marks]
4. Show, by taking limits along two different paths to the origin $(0,0)$, that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3}}{x^{4}+y^{4}+x^{2} y^{2}}
$$

does not exist.
[4 marks]
5. Work out all first and second partial derivatives of

$$
f(x, y)=\cos \left(x^{2}-y^{2}\right)
$$

and verify that

$$
\begin{gathered}
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x} \\
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+4\left(x^{2}+y^{2}\right) f=0 .
\end{gathered}
$$

6. Suppose that $u=u(x, y)$ and $v=v(x, y)$ are functions of (x, y) such that

$$
u(0,0)=1, \quad v(0,0)=2
$$

and

$$
\frac{\partial u}{\partial x}(0,0),=-2, \quad \frac{\partial v}{\partial x}(0,0)=-1
$$

Then work out

$$
\frac{\partial F}{\partial x}(0,0)
$$

where $F(x, y)=f(u, v)$, and

$$
f(u, v)=u^{3}+3 v^{2} u-v^{2} .
$$

7. Find the gradient vector $\nabla f(2,1,1)$, where

$$
f(x, y, z)=y^{3}-x^{2} z^{2}+2 x y z
$$

Find also the tangent plane to the surface $f(x, y, z)=1$ at the point $(2,1,1)$.
8. Locate and classify all stationary points of the function

$$
f(x, y)=2 x^{3}+9 y+6 y^{2}+y^{3}-3 x^{2} y .
$$

[10 marks]
9. Find the linear approximation near $(x, y)=(1,1)$ to the function

$$
f(x, y)=\left(2 x^{2}+y^{2}\right)^{1 / 2}
$$

10. By changing to polar coordinates, compute

$$
\iint_{D} \sin \left(\pi\left(x^{2}+y^{2}\right)\right) d x d y
$$

where

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

SECTION B

11.

(i) Write down the Maclaurin series of $f(x)=\sin x$, and the fourth Taylor polynomial $P_{4}(x, 0)$ at 0 .
(ii) Give an expression for the remainder term $R_{4}(x, 0)$ of f at 0 . Show that it satisfies

$$
\left|R_{4}(x, 0)\right| \leq \frac{|x|^{5}}{5!}
$$

Hence show that if $x \geq 0$,

$$
\int_{0}^{1} R_{4}\left(t^{2}, 0\right) d t \leq \frac{1}{1320}
$$

(iii) Hence, or otherwise, compute

$$
\int_{0}^{1} \sin \left(x^{2}\right) d x
$$

to 2 decimal places.
[15 marks]
12. Solve the following differential equations with the given boundary conditions:
(i)

$$
y^{\prime \prime}+4 y=8 x^{2}-4 x
$$

with $y(0)=2, y^{\prime}(0)=1$.
(ii)

$$
y^{\prime \prime}+4 y=\cos x+\sin x
$$

with $y(0)=1, y^{\prime}(0)=3$.
13. Find the minimum distance from the line

$$
\underline{r}(t)=(t, 2 t)
$$

to the hyperbola

$$
g(x, y)=x^{2}-y^{2}=1 .
$$

Hint: You may assume that the square of the distance from $\underline{r}(t)$ to the point (x, y) is

$$
f(x, y, t)=(x-t)^{2}+(y-2 t)^{2} .
$$

Try to show that the minimum must occur at a point (x, y) on the hyperbola satisfying either $2 x-y=0$ or $x-2 y=0$, and discount one of these. [15 marks]
14.
a) Sketch the region R bounded by the two parabolas $y=2 x^{2}$ and $y=$ $x^{2}+1$, indicating clearly where the parabolas cross.
b) Find the area of R.
c) Find the centroid (\bar{x}, \bar{y}) of R.
[15 marks]

