This is supposed to take ten minutes or less.
What is the Taylor series of $f(x)=\ln x$ at 1 ?

Hint:

We need to calculate all the derivatives of f.
First, at a general point x,
and then at $x=1$.
So ...
. $f^{\prime}(x)=x^{-1}$,
. $f^{\prime \prime}(x)=-x^{-2}$,
. $f^{(3)}(x)=2 x^{-3}$,
. $f^{(4)}(x)=-3!x^{-4}$,
. and the general formula is

$$
f^{(n)}(x)=(-1)^{n-1}(n-1)!x^{-n} .
$$

So putting $x=1$ gives:
. $f(1)=\ln (1)=0$,
. $f^{\prime}(1)=1^{-1}=1$,
$\frac{f^{\prime \prime}(1)}{2!}=-\frac{1}{2}$,
. $\frac{f^{(3)}(1)}{3!}=\frac{1}{3}$,
$\frac{f^{(4)}(1)}{4!}=-\frac{1}{4}$, and in general,

$$
\frac{f^{(n)}(1)}{n!}=(-1)^{n-1} \frac{1}{n}
$$

So the Taylor series of $\ln x$ at $x=1$,

$$
\begin{gathered}
f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2}+\frac{f^{(3)}(1)}{3!}(x-1)^{3}+\frac{f^{(4)}(1)}{4!}(x-1)^{4}+\cdots \\
+\frac{(-1)^{n-1}}{n}(x-1)^{n}+\cdots
\end{gathered}
$$

is

$$
0+(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\cdots
$$

$$
+\frac{(-1)^{n-1}}{n}(x-1)^{n}+\cdots
$$

So the fourth Taylor polynomial $P_{4}(x)$ of $\ln x$ at 1 is

$$
(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}
$$

The associated remainder term $R_{4}(x)$ is

$$
\frac{f^{(5)}(c)}{5!}(x-1)^{5}=\frac{c^{-5}}{5}(x-1)^{5}
$$

for some c between 1 and x.
Now take $x=2$.

$$
f(2)=\ln 2
$$

According to the university calculator, this is
0.6931..

The fourth Taylor polynomial gives the approximation

$$
P_{4}(2)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}=\frac{7}{12}=0.58333333 \cdots
$$

For c between 1 and $2, c^{-5}$ is largest at $c=1$. So an upper bound on $\mid R_{5}(2)$ is given by

$$
\left|R_{5}(2)\right| \leq \frac{1}{5}
$$

So we obtain

$$
\left|\ln 2-\frac{7}{12}\right| \leq 0.2
$$

which is consistent with the calculator's calculation.

