Practice Class Test MATH102 2008

1. Write down the Taylor series at 0 of $f(x)=\sin 2 x$.
2. Write down the quadratic Taylor poynmial $P_{2}(x)=P_{2}(x, 4)$ near $x=4$ for $f(x)=x^{1 / 2}$, and work out $P_{2}(3)$. Write down an expression for the remainder term $R_{2}(3)$. Now find an upper bound on $\left|R_{2}(3)\right|$ and hence show that

$$
\left|\sqrt{3}-P_{2}(3)\right| \leq \frac{1}{16 \times 3^{5 / 2}}<0.005
$$

Confirm this by using your calculator to compute $\sqrt{3}$.
3. Solve

$$
x \frac{d y}{d x}+y^{2}=0, \quad y(1)=2 .
$$

4. Solve

$$
x \frac{d y}{d x}-y=x^{2}, \quad y(2)=1
$$

5. Find the general solution to

$$
\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+5 y=0
$$

6. Find the general solution to

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=e^{2 x} \tag{6marks}
\end{equation*}
$$

7. Show that

$$
\frac{x^{2}-x y}{x^{2}+y^{2}}
$$

does not exist, by calculating limits along two different directions at $(0,0)$.
[4 marks]

