1. The Taylor series is

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{2 k+1} x^{2 k+1}}{(2 k+1)!}=2 x-\frac{2^{3}}{3!} x^{3}+\frac{2^{5}}{5!} x^{5} \cdots
$$

No working is required.
2.

$$
\begin{gathered}
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}, \quad f^{\prime \prime}(x)=\frac{-1}{4} x^{-3 / 2}, \quad f^{(3)}(x)=\frac{3}{8} x^{-5 / 2}, \\
f(4)=2, \quad f^{\prime}(4)=\frac{1}{4}, \quad f^{\prime \prime}(4)=\frac{-1}{32} .
\end{gathered}
$$

So

$$
P_{2}(x)=2+\frac{1}{4}(x-4)+\frac{-1}{64}(x-4)^{2} .
$$

$$
P_{2}(3)=2-\frac{1}{4}-\frac{1}{64}=1.734375 .
$$

$$
R_{2}(3)=\frac{3}{8 \times 3!} c^{-5 / 2}(-1)^{3}
$$

for some $c \in[3,4]$.
So

$$
\left|R_{2}(3)\right| \leq \frac{1}{16 \times 3^{5 / 2}}=0.004009377 . .<.005
$$

So

$$
|\sqrt{3}-1.734375| \leq 0.005
$$

This is true because $\sqrt{3}=1.732050808 \ldots$
3.

$$
\int \frac{-d y}{y^{2}}=\int \frac{d x}{x}
$$

So

$$
\frac{1}{y}=\ln x+C
$$

Putting $x=1, \frac{1}{2}=C$. So

$$
y=\frac{2}{2 \ln x+1} .
$$

[2 marks]
4.

$$
\begin{gathered}
\frac{d y}{d x}+\frac{-1}{x} y=x . \\
\int \frac{-d x}{x}=-\ln x=\ln \left(x^{-1}\right) .
\end{gathered}
$$

So the integrating factor is $\exp \left(\ln x^{-1}\right)=x^{-1}$.
So the equation becomes

$$
\frac{d}{d x}\left(x^{-1} y\right)=1
$$

So

$$
\begin{aligned}
& x^{-1} y=x+C \\
& y=x^{2}+C x
\end{aligned}
$$

Putting $x=2,1=4+2 C$ and $C=-\frac{3}{2}$. So

$$
y=x^{2}-\frac{3}{2} x
$$

5. Trying $y=e^{r x}$ we obtain

$$
r^{2}-4 r+5=0
$$

So $r=2 \pm i$. So the general solution is

$$
y=A e^{(2+i) x}+B e^{(2-i) x}=e^{2 x}(C \cos x+D \sin x)
$$

6. Trying $y=e^{r x}$ for a solution to the equation with $e^{2 x}$ on the righthand side replaced by 0 , we obtain

$$
r^{2}+2 r+1=0
$$

So $r=-1$. So the complementary solution is $y_{c}=A e^{-x}+B x e^{-x}$.
[3 marks]
Try $y=C e^{2 x}$ for a particular solution. Then $d y / d x=2 e^{2 x}$ and $d^{2} y / d x^{2}=$ $4 e^{2 x}$. So

$$
(4+4+1) e^{2 x}=C e^{2 x}
$$

and $C=\frac{1}{9}$. So the general solution is

$$
y=A e^{-x}+B x e^{-x}+\frac{1}{9} e^{2 x}
$$

7. Take limits along the axes, for example.

$$
\begin{aligned}
& \lim _{x \rightarrow 0, y=0} \frac{x^{2}-x y}{x^{2}+y^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}}=1, \\
& \lim _{y \rightarrow 0, x=0} \frac{x^{2}-x y^{2}}{x^{2}+y^{2}}=\lim _{y \rightarrow 0} \frac{0}{y^{2}}=0 .
\end{aligned}
$$

So the limits along the axes are different and the limit as $(x, y) \rightarrow(0,0)$ does not exist.

