SECTION A

1. Write down the Taylor series of $f(x)=e^{2 x}$ about $x=0$. State for which x this is convergent.
2. Find the general solutions of the differential equations
a) $x^{2} \frac{d y}{d x}=(x+2) y$,
b) $\frac{d y}{d x}-y=e^{-x}$.
3. Solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-15 y=0
$$

subject to $y(0)=0, y^{\prime}(0)=4$.
4. Show, using two different paths through the origin, that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{x^{2}+2 y^{2}}
$$

does not exist.
5. Work out all first and second partial derivatives of

$$
f(x, y)=x^{4}-6 x^{2} y^{2}+y^{4} .
$$

verify that

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}
$$

and

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

[6 marks]
6. Find $\frac{\partial z}{\partial u}(1,2)$ and $\frac{\partial z}{\partial v}(1,2)$ where $z=x y+y \ln x$ and

$$
\begin{gathered}
x(1,2)=1, \quad y(1,2)=1 \\
\frac{\partial x}{\partial u}(1,2)=1 \frac{\partial y}{\partial u}(1,2)=-1, \quad \frac{\partial x}{\partial v}(1,2)=2, \frac{\partial y}{\partial v}(1,2)=0 .
\end{gathered}
$$

[6 marks]
7. Given that $f(x, y, z)=x^{2}-y^{2}-z x$, find the directional derivative of f at $(1,-1,2)$ in the direction $2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$.
[4 marks]
8. Locate and classify all stationary points of

$$
f(x, y)=5 x y^{2}-8 x^{2}-9 y^{2} .
$$

9. Find a linear approximation near $(1,0)$ to

$$
f(x, y)=\sqrt{x^{2}+y^{2}}
$$

[4 marks]
10. By changing to polar coordinates, compute

$$
\iint_{D} \frac{1}{1+x^{2}+y^{2}},
$$

where D is the unit disc:

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

SECTION B

11. a) Write down the degree two Taylor polynomial $P_{2}(y, 0)$ of e^{y} at 0 , and the remainder term $R_{2}(y, 0)$. Also write down $P_{9}(y, 0)$ and the remainder term $R_{9}(y, 0)$.

Now if $y=-x$ and $x>0$, show that

$$
\left|P_{2}(-x, 0)-e^{-x}\right| \leq \frac{x^{3}}{3!}
$$

and

$$
\left|P_{9}(-x, 0)-e^{-x}\right| \leq \frac{x^{10}}{10!}
$$

Hence show that if $0 \leq x \leq \frac{1}{2}$ then

$$
\left|P_{2}(-x)-e^{-x}\right| \leq \frac{1}{48}
$$

and if $0 \leq x \leq 2$ then

$$
\left|P_{9}(-x)-e^{-x}\right|<0.0003
$$

b) Write down the first four terms of the Taylor series of e^{x} and e^{-x}. State for which values of x the Taylor series for e^{x} is convergent and equal to e^{x}. Hence, or otherwise, show that

$$
\lim _{x \rightarrow 0} \frac{1-x+\frac{x^{2}}{2}-e^{-x}}{1+x+\frac{x^{2}}{2}-e^{x}}=-1
$$

12.

a) Find the general solution to

$$
\left(x^{2}-y^{2}\right) \frac{d y}{d x}=x y .
$$

b) Solve the equation

$$
y^{\prime \prime}+2 y^{\prime}-3 y=\cos x
$$

subject to

$$
y(0)=1, \quad y^{\prime}(0)=-1 .
$$

13. Find the minimum distance between the line $x+y=2$ and the ellipse $x^{2}+2 y^{2}=1$. You may assume (as is true) that this line and ellipse do not intersect.
Hint: A general point on the line is given by $(x, y)=(2-t, t)$ for $t \in(-\infty, \infty)$. If suffices to find the minimum of the square of the distance. So it is necessary to find the minimum of

$$
f(x, y, t)=(x-2+t)^{2}+(y-t)^{2}
$$

subject to

$$
g(x, y)=x^{2}+2 y^{2}=1 .
$$

Show that at a minimum, either $x+y=2$ (which is impossible) or $x=2 y$.
[15 marks]

14.

a) Find the area of the region R bounded by the parabola $x=4 y^{2}$ and the line $2 y+2=x$.
b) Find the centre of mass (\bar{x}, \bar{y}) of R, assuming uniform density.

