1. Write down the Taylor series at 0 of $f(x)=e^{-x}$.
2. Write down the quadratic Taylor poynmial $P_{2}(x)=P_{2}(x, 4)$ near $x=4$ for $f(x)=x^{1 / 2}$, and work out $P_{2}(5)$. Write down an expression for the remainder term $R_{2}(x)$. Now find an upper bound on $\left|R_{2}(5)\right|$ and hence show that

$$
\left|\sqrt{5}-P_{2}(5)\right| \leq 2^{-9}=0.001953125 .
$$

Confirm this by using your calculator to compute $\sqrt{5}$.
[9 marks]
3. Solve

$$
\frac{d y}{d x}+x y=0, \quad y(0)=2
$$

4. Solve

$$
x \frac{d y}{d x}+4 y=x^{3}, \quad y(1)=0 .
$$

5. Find the general solution to

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=0
$$

6. Find the general solution to

$$
\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=x
$$

7. Show that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+2 x y}{x^{2}+y^{2}}
$$

does not exist, by calculating limits along two different directions at $(0,0)$.

