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I would like to start by saying a bit about how I got into this. My first
postdoc in 1978-9, was at the Institute for Advanced Study. This in itself was
because of a twist of fate which had nothing to do with Bill Thurston. But
there I was, and in 1978-9, Bill was running a course in hyperbolic geometry.
There were some notes from the previous year. I think he moved onto three
manifolds pretty fast, and those notes were in the process of being written. One
section came out during the year, and another the following year. I still have
these. I was a dynamicist (by instinct and, although I had a fantastic supervisor,
fairly limited training because of various circumstances) with no experience in
hyperbolic geometry, although I had become very interested in homogeneous
Lie group actions. So although I attended many of Bill’s lectures, I felt pretty
much out of it. I was struggling to understand early chapters of the notes and
when Bill realised during one session (for example) that he had completed a
proof of the Smith Conjecture, I did not really notice, or more basically, had no
idea what he was talking about (as usual).

For me it was a very tough year. However, at some point I realised that this
was mathematics as I had never known it before, a real struggle, and the highly
visual approach was completely new to me, but it did make perfect sense when I
actually got it, or part of it. I was 25, and it felt like the start of my education.
It changed the way I worked on mathematics, permanently.

I only had part of the picture that year, and although of course my under-
standing remains very partial, I subsequently learnt more about Bill’s approach,
and other aspects of it. Two years later, I was in Paris for a year, and before
I went there I read most of the “Travaux de Thurston” on the isotopy class-
sification of surface homeomorphisms, which was written (mostly) by Fathi,
Laudenbach and Poénaru. I already knew Fathi, and that year I got to know
Laudenbach quite well, and also Poénaru. As I have mentioned in my abstract,
it is now impossible to study dynamics in two dimensions without an under-
standing of this work of Bill Thurston. This work also illustrates the way in
which dynamical ideas enter into Bill’s work constantly. And, of course, the
work brought to the fore important dynamical systems of which there has been
intense study in subsequent decades, with this study contributing to studies of
geometry and vice versa. (Dynamicists in general love trespassing into other ar-
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eas.) Other mathematics was emerging into the limelight at this time, of course,
and while I was in Paris, Dennis Sullivan, Adrien Douady, John Hubbard and
Michel Herman were all making connections with complex dynamics. Sullivan
formulated the dictionary translating ideas between hyperbolic geometry and
complex dynamics. At some point, Bill Thurston got interested, and in 1982 he
proved the classification result about critically finite branched coverings. This
result has had a profound effect on work in complex dynamics ever since. There
are also multiple connections with Bill’s work in hyperbolic geometry and sur-
face homeomorphisms which are intriguing. I find these connections particularly
interesting and I think we still only have some facets of them. Although I this
talk is announced as a “revisit”, I am not going to say much about new proof
of results which appeared in Astérisque 288 (2003) in the light of later devel-
opments. There are some very open-ended open problems which I will try to
expound/promote.

Branched coverings

• The sphere and the torus are the only compact surfaces to admit self-
branched coverings of degree greater than one.

• Branched coverings of the sphere which are not homeomorphisms neces-
sarily have branch points, also called critical values.

• Rational maps are examples of branched coverings.

• The dynamics of rational maps is one of the main areas of complex dy-
namics.

(Transcendental dynamics has grown in importance in recent decades, and dy-
namics of Fuchsian and Kleinian groups is part of the larger study of these, with
parallels pointed out by Sullivan.)

Critically finite branched coverings
A branched covering f is said to be critically finite if the postcritical set

X(f) = {fn(c) : c critical , n > 0}

is finite.

Two critically finite branched coverings f0 and f1 are usually said to be
Thurston equivalent if there is a homotopy ft (t ∈ [0, 1]) through critically finite
branched coverings such that X(ft) varies isotopically for t ∈ [0, 1].

In this talk a slightly stronger notion of Thurston equivalence will be used.
We consider branched coverings of the Riemann sphere for which the critical
values are numbered, and then f0 and f1 are said to be Thurston equivalent if
the isotopy of X(ft) preserves the numbering of critical values.
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Thurston’s Theorem for critically finite branched coverings (1982)
The quotient by Möbius conjugation of a Thurston equivalence class is con-

tractible to the Möbius conjugacy class of a unique rational map, if and only
if a certain orbifold is hyperbolic, and a certain combinatorial condition holds,
which can be described as the non-existence of a Thurston obstruction.

Thurston’s theorem has been deliberately formulated as a result about the
topology of a space of maps. It is a geometrisation result in two ways.

It gives a condition under which a map is holomorphic, modulo the appro-
priate type of homotopy equivalence (Thurston equivalence).

It also shows that the corresponding space of maps is contractible to a space
with a geometric structure – although there is little to say about geometries on
a space consisting of a single point. But a point is just the simplest case. . .

A generalisation
The elements of a connected topological spaceB = B(f0, Y (f0)) are [f, Y (f)],

and include [f0, Y (f0)], where:

• f is a branched covering of the Riemann sphere;

• Y (f) is a finite set which contains all the critical values, which are num-
bered, and is the union of the set of critical values and Z(f), where
f(Z(f)) ⊂ Z(f);

• Y (f) andZ(f) vary isotopically with f , for [f, Y (f)] ∈ B;

• [f, Y (f)] denotes the conjugacy class of (f, Y (f)) by Möbius transforma-
tions, using only Möbius transformations which preserve the numbering
of critical values.

For example, B could be the Thurston equivalence class of a critically finite
branched covering f0, with Y (f0) = Z(f0) = X(f0).

Why?
The homotopy class of a map, suitably defined, in many cases, gives a sur-

prising amount of information about the dynamics of the map, via a semicon-
jugacy. Such results have a long history, with earlier folklore results predating
John Franks’ thesis in 1968 (on homeomorphisms which are homotopic to hy-
perbolic toral automorphisms). A result of this type holds for critically finite
branched coverings which are Thurston equivalent to rational maps.

Dynamicists are always interested in families of dynamical systems, not just
single ones. This is especially true of researchers in complex dynamics. Probably
this is partly because it is relatively easy to see variation of dynamics in families
of complex dynamical systems, at least in a simplistic sense. One can see how
dynamics of critical values vary and, roughly speaking, in many cases, a set of
cases which is conjecturally dense, the dynamics of the (finitely many) critical
values of a map control the dynamics of all points. But variation of the dynamics
of critical values is related to the topology of the space of maps. So that is why.
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The connection with Teichmüller space
If [ft, Y (ft)] is a path in B then ft = ϕt ◦ f0 ◦ ψ−1

t where:

• ϕ0 and ψ0 are the identity is the identity and t 7→ ϕt and t 7→ ψt are
isotopies;

• ϕt(Y (f0)) = Y (ft), ψt(Z(f0) = Z(ft) and ϕt and ψt are isotopic homeo-
morphisms through an isotopy which is constant on Z(f0);

• ϕt is determined up to isotopy constant on Y (f0), and post-composition
by a Möbius transformation, by [ft, Y (ft)]: that is, as an element [ϕt] of
the Teichmüller space T (Y (f0)) of the sphere with marked set bijective to
Y (f0).

This correspondence maps the universal cover of B to T (Y (f0)) with con-
tractible fibres, so that B is a K(π, 1). The fundamental group maps to a sub-
group of the pure mapping class group PMG(C, Y (f0)). Since B is a K(π, 1),
the Topographer’s View is a result about the structure of its fundamental group.

The Topographer’s View
I obtained a result, or sequence of results, which I called The Topographer’s

View – which I do not particularly want to revisit at this juncture, but it is not
possible to separate the Topographer and Resident’s views completely, because
they complement each other.

The Topographer’s View of B = B(f0, Y (f0)) is a homotopy equivalence to
an ordered graph of countably many topological spaces of maps, where these
topological spaces have some geometric structure.

The “base” geometric pieces are the rational maps in B quotiented by Möbius
conjugation.

An important part of the result, not easy, is that the inclusion of each
component V of rational maps in the larger space B is injective on π1.

This result was only obtained for B consisting of degree two maps, or maps
“of polynomial type”, Z(f0) contained in the full orbit of periodic critical points.

An open question
If a space is made up of simpler pieces, where these pieces might have some

geometric structure, then how these pieces are glued together is obviously an
important part of the definition of the topology. Obtaining results about the
gluing was a major task in the proof of the Topologist’s View. But there were
some important questions that I was unable to answer. The main one was
the order in which handles were glued. I initially thought that all handles
would attach just one geometric piece to one other, but I was unable to prove
this, obtaining instead an ordering of pieces so that each piece was attached by
handles to a union of lower order pieces.

Of course, this question has a group-theoretic interpretation, about the struc-
ture of the fundamental group.
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Question: nature of the embedding
Having seen that the universal cover Ṽ of V embeds in T (Y (f0)), one can

obviously ask about the nature of the embedding. From the group-theoretic
point of view, this is a question about a subgroup of the Pure Mapping Class
Group PMG(C, Y (f0)) which identifies with the fundamental group of the space
of rational maps. Of course the embedding is Lipschitz, but I know nothing
about the inverse map.

A projection of the embedding
In the cases that we consider, f0 is of degree two, and Y (f0) \Z(f0) = Y \Z

is a single point, a critical value of f0, denoted by v2 = v2(f0).

There is a natural projection from T (Y ) to the universal cover C̃ \ Z of C\Z,
defined as follows.

Let πZ : T (Y ) → T (Z) denote the natural projection and let dY and dZ
denote the Tiechmüller metrics on T (Y ) and T (Z) If [ϕt] is a path in T (Y )
from a basepoint [ϕ0] = x0, then let χt : C→ C be the unique homeomorphism
minimizing qc-distortion such that

πZ([ϕt]) = πZ([χt ◦ ϕ0])

Then t 7→ χ−1
t ◦ ϕt(v2) defines an element of C̃ \ Z.

The composition with the embedding gives a map

ρ : Ṽ → C̃ \ Z.

The Resident’s View Theorem (or part of it)
In the cases considered, V is a finite type Riemann surface of negative Euler

characteristic, and so, of course is C \Z. So the universal cover of each of these
Riemann surfaces is the unit disc up to conformal equivalence, with boundary
the unit circle.

ρ : Ṽ → C̃ \ Z extends continuously and monotonically to map the boundary

∂Ṽ into ∂C̃ \ Z with just countably many discontinuities which can be naturally
characterised, and where right and left limits exist.

Once the continuity is proved, monotonicity is straightforward.

The limit of ρ along geodesics
We use dP to denote the Poincaré (or hyperbolic) metric on the unit disc

(the universal cover of C \ Z).
Theorem 1. limx→∞ ρ(x) exists along any half geodesic segment ` in T (Y ) such
that limx→∞ dP (0, ρ(x)) = +∞. In fact, if ` starts at x0 and dP (0, ρ(z)) ≥ n
for all z ∈ ` between x and y then for a suitable constant C,

|ρ(x)− ρ(y)| ≤ Cne−n.
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It therefore seems natural to consider geodesic segment with endpoints in Ṽ
(which is a subset of T (Y )) and to compare ρ on the geodesic with a path with
the same endpoints.

A key idea in the proof of this theorem is that geodesic segments on C \ Z
tend to have many self-intersections.

More precisely, given any geodesic segment γ of length ∆ there is a constant
C1 such if we consider lifted geodesics in the unit disc starting from 0, every
such geodesic segment of length n ends within Euclidean distance C1e

∆−n of a
geodesic segment which has endpoints within a bounded Poincaré distance of
the endpoints of γ.

So we can choose γ to do anything we like by choosing ∆ sufficiently large,
e.g. to cut C \ Z into topological discs with at most one puncture.

Continuity at punctures
It is relatively easy to check that limx→∞ ρ(x) exists along half-geodesics in

V ending at any puncture corresponding to a rational map f at which v2(f) ∈
Z(f).

Note that f /∈ V because Z(g)∪{v2(g)} = Y (g) varies isotopically for g ∈ V .

In these cases, limx→∞ ρ(x) is a “lift” of a point in Z – the endpoint of a
geodesic in C \ Z which ends at a point of Z.

It is also quite easy to show that, for a lift x of any other puncture of V ,
either limy→x ρ(y) exists, or left and right limits exist outside a horosphere.

Discontinuities
The discontinuities x ∈ ∂Ṽ are the points such that lim infy→x dP (0, ρ(y)) <

∞. These are quite easily characterised and also it is quite easy to show that
right and left limits exist outside a horosphere or Stoltz angle at such a point.
However I have never managed to find such a point of pseudo-Anosov type. It
is possible (although unlikely) that they do not exist.

Continuity along one path is sufficient
The points at which limits exist are sufficiently dense that the proof of the

Resident’s View is completed by showing that for each x ∈ Ṽ , and for a choice
of basepoint x0, there is just one path xt in Ṽ from x0 to x on which the same
uniform continuity for limits holds, that is, if dP (ρ(xu), 0) ≥ n for all u ∈ [s, t]
then |ρ(xs)− ρ(xt)| ≤ C1ne

−n.

It is natural to start with the geodesic segment in T (Y (f0)) and to try to
modify this to a path in Ṽ .

It is only this part of the proof that I have been revisiting.
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Use of a chain of geodesic segments to get the path in Ṽ
Suppose that [x0, x] is a geodesic segment in T (Y ) with endpoints x0 and x

in Ṽ .

The path in Ṽ with these endpoints is obtained by taking limn→∞ xn(x1) ∈
Ṽ corresponding to x1 ∈ [x0, x], where:

dY (xn, xn+1)− dZ(xn, xn+1) ≤ C;

a chain of long thick and dominants (αi, `i) with `i ⊂ [xi, xi+1] and αi∩αi+1 6= ∅
is non-cancelling, so that `i is a bounded dαi

-distance from [x1, xn] for 1 ≤ i < n.

From this we can deduce properties of the difference between ρ(x1) and
ρ(xn). In revisiting this proof, my hope was to use a result about chains of
long thick and dominants on Teichmüller geodesics which I found rather hard
to prove, and useful in another situation.

I am not quite there yet, but have found an application to the analysis of
the relation between τ([x, τ(x)]) and [τ(x), τ2(x)] where τ is the appropriate
analogue for B(f0, Y (f0)) of the Thurston pullback.

The use of Teichmüller space
The proof of Thurston’s Theorem for critically finite branched coverings

used a distance-non-increasing map τ : T (X(f0)) → T (X(f0)) known as the
Thurston pullback. For a suitable integer k, τk is a uniform contraction on any
set x : d(x, τ(x) < M}. So there is a unique fixed point.

The map τ is given by τ([ϕ]) = [ψ] where ϕ ◦ f0 = s ◦ ψ where s is a
holomorphic branched covering and ψ is a homeomorphism.

This equation determines s and [ψ] uniquely.
If τ([ϕ]) = [ϕ] then ϕ ◦ f0 ◦ ϕ−1 = s, and s is critically finite and Thurston

equivalent to f0. Since τ is a contraction, (s, ϕ) is unique, up to Möbius conju-
gation of s and post-composition of ϕ by this same Möbius transformation.

The iteration in the generalised case
in this more general case, the Teichm|’uller space used is T (Y ), where Y

contains all the critical values of f0 but may not be forward invariant. Only
Z ⊂ Y is forward invariant, and Z does not contain all the critical values.

If we use the same formula as before and define τ([ϕ]) = [ψ] then we can
consider [ψ] as an element of T (Z). But we want an iteration on T (Y ).

There is a natural way to do this, simply by defining τ([ϕ]) by the two
conditions

πZ(τ([ϕ]) = πZ([ψ])

dY ([ϕ], τ([ϕ])) = dZ([ϕ], τ([ϕ])),

where dZ denotes Teichmüller distance in T (Z).
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Properties of τ : decreasing along orbits
τk : T (Y )→ T (Y ) is not a global contraction for any k However

dY (τ([ϕ]), τ2([ϕ])) ≤ dY ([ϕ], τ([ϕ])),

and for a suitable n depending only on #(Y ),

dY (τn([ϕ]), τn+1([ϕ])) < dY ([ϕ], τ([ϕ])).

Properties of τ : the fixed set
The most important property is the characterisation of the fixed set of τ .

If τ([ϕ]) = [ϕ] then s(ϕ(Z) = ϕ(Z) where s is the holomorphic map such
that ϕ ◦ f0 = s ◦ ψ. Also, ϕ and ψ are isotopic via an isotopy which is constant
on Z.

This means that the fixed set of τ is the union of all the sets Ṽ ⊂ T (Y ),
where V runs over the components of rational maps in B.

Definition of the sequence xn
The sequence xn = xn(x1) is then obtained by defining xn+1 to be a modi-

fication of τ(xn).
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