Quasi-conformal deformation theory and the Measurable Riemann Mapping Theorem

Mary Rees

University of Liverpool

January 2008

Basics about holomorphic maps

Recall some facts about holomorphic maps. If

$$
z=x+i y
$$

$$
f(z)=u(x, y)+i v(x, y)
$$

then

$$
f^{\prime}(z)=u_{x}+i v_{x}=v_{y}-i u_{y}
$$

Considered as a function from \mathbb{R}^{2} to \mathbb{R}^{2}, the derivative is

$$
\left(\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)=\left(\begin{array}{cc}
u_{x} & -v_{x} \\
v_{x} & u_{x}
\end{array}\right)
$$

If $f^{\prime}(z) \neq 0$ then $u_{x}^{2}+v_{x}^{2} \neq 0$. Lengths are not usually preserved, but angles are.
The action of the derivative at z_{0} is multiplication by $f^{\prime}\left(z_{0}\right)$.

Conversely, suppose that $f: U\left(\subset \mathbb{R}^{2}\right) \rightarrow \mathbb{R}^{2}$ is continuous, and continuously differentiable except at finitely many points, and the dervative $D f$ is invertible, has positive determinant and preserves angles except at finitely many points. Write $f=(u, v)$. The derivative $D f$ is

$$
\left(\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)
$$

If angles are to be preserved then this must be of the form

$$
\left(\begin{array}{cc}
r \cos \theta & -r \sin \theta \\
r \sin \theta & r \cos \theta
\end{array}\right)
$$

So the Cauchy-Riemann equations

$$
\begin{aligned}
u_{x} & =v_{y} \\
v_{x} & =-u_{y}
\end{aligned}
$$

are satisfied, and hence f is holomorphic, except possibly at finitely many points. But since f is continuous, any singularities are removable and f is holomorphic on U.

How to write Riemannian metrics in the plane

The usual classical form of writing a Riemannian metric in the plane is

$$
a d x^{2}+2 b d x d y+c d y^{2}
$$

where a, b, c are real-valued functions of (x, y), and the symmetric matrix

$$
\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

is positive definite. For this we need

$$
\begin{gathered}
a+c>0 \\
a c-b^{2}>0
\end{gathered}
$$

The classical notation is suggested by the formula for the length of a curve $(x(t), y(t))(t \in I)$ in this metric:

$$
\int_{1} \sqrt{a(d x / d t)^{2}+2 b(d x / d t)(d y / d t)+c(d y / d t)^{2}} d t
$$

Field of Ellipses

A 2×2 symmetric positive definite matrix A defines an ellipse with equation

$$
\left(\begin{array}{ll}
x & y
\end{array}\right) A\binom{x}{y}=1
$$

The constant on the righthand side is unimportant. Note that

$$
A=P^{T} \Delta P
$$

with P orthogonal and Δ diagonal. Interchanging the rows of P if necessary, we can assume that P has determinant 1.

Then we get the standard form

$$
\left(\begin{array}{ll}
X & Y
\end{array}\right) \Delta\binom{X}{Y}=1
$$

for the ellipse by making the change of variable

$$
\binom{X}{Y}=P\binom{x}{y}
$$

The major and minor axes of the ellipse are orthogonal to each other and are given by the columns of U (not necessarily in that order) provided the eigenvalues of A are distinct.
This association of an ellipse (up to scale) to each point in the domain is called a field of ellipses. The major axis at each point - up to direction - gives a line field. It is undefined when the eigenvalues of A are equal.

Complex form of a Riemannian metric

In formulating the measurable Riemann mapping theorem it is more convenient to write the metric $a d x^{2}+2 b d x d y+c d y^{2}$ in another form:

$$
\lambda|d z+\mu d \bar{z}| 2=\lambda|\mu| \cdot\left|\bar{\mu}^{-1} d \bar{z}+d z\right|^{2}
$$

where $\lambda>0$ and $|\mu|<1$ and λ and $\mu=\mu_{1}+i \mu_{2}$ are functions of z. the function μ is called the Beltrami differential (of the Riemannian metric). To get between the two:

$$
\begin{gathered}
2 \lambda \mu_{2}=b, \\
\lambda\left(1+|\mu|^{2}+2 \mu_{1}\right)=a \\
\lambda\left(1+|\mu|^{2}-2 \mu_{1}\right)=c .
\end{gathered}
$$

Then

$$
a c-b^{2}=\lambda^{2}\left(1-|\mu|^{2}\right)^{2}
$$

and

$$
\frac{a c-b^{2}}{(a+c)^{2}}=\frac{1-|\mu|^{2}}{1+|\mu|^{2}}
$$

So μ is bounded from 1 if the ratio of the eigenvalues of A is bounded above and below, where

$$
A=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

There is a relation between the argument of $\mu(z)$ and the major axis of the ellipse associated to the metric at z. If $\pm v$ is the direction of the major axis then

$$
\arg (\mu)=\arg \left(v^{-2}\right)
$$

Transforming Riemannian metrics

If $f: U \rightarrow V$ is a diffeomorphism between open subsets of \mathbb{R}^{2}, and σ is a Riemannian metric on V then we can define a Riemannian metric $f^{*} \sigma$ on U by the following formula. If σ is given in classical terminology by $a d x^{2}+2 b d x d y+c d y^{2}$ then $f^{*} \sigma$ is given by

$$
\left(\begin{array}{ll}
d x & d y
\end{array}\right) D f^{T}\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) D f\binom{d x}{d y}
$$

where $D f$ is the 2×2 matrix representing the derivative. If $\ell_{1}\left(\gamma_{1}\right)$ denotes length of a path γ_{1} with respect to σ and $\ell_{2}\left(\gamma_{2}\right)$ denotes length of a path γ_{2} with respect to $f^{*}(\sigma)$ then

$$
\ell_{2}(\gamma)=\ell_{1}(f \circ \gamma)
$$

This follows from the definition of $f^{*} \sigma$ and the chain rule for differentiating $f \circ \gamma$.

Note that f^{*} is a contravariant functor, that is

$$
(f \circ g)^{*} \sigma=g^{*} f^{*} \sigma
$$

(where defined).

Transforming the standard metric in the complex notation

The standard metric σ_{0} is $d x^{2}+d y^{2}=|d z|^{2}$. Suppose that $f: U \rightarrow V$ is a diffeomorphism between open subsets U and V of \mathbb{C}. So f is a complex-valued function on a complex domain, and the same is true for the partial derivatives f_{x} and f_{y}. Write

$$
\begin{aligned}
& f_{z}=\frac{1}{2}\left(f_{x}-i f_{y}\right) \\
& f_{\bar{z}}=\frac{1}{2}\left(f_{x}+i f_{y}\right)
\end{aligned}
$$

If f is holomorphic, then, by the Cauchy-Riemann equations, $f_{z}=f^{\prime}$ and $f_{\bar{z}}=0$. Write

$$
\begin{aligned}
& d z=d x+i d y \\
& d \bar{z}=d x-i d y
\end{aligned}
$$

Then

$$
f_{x} d x+f_{y} d y=f_{z} d z+f_{\bar{z}} d \bar{z}
$$

Then $f^{*} \sigma_{0}$ is given by

$$
\begin{gathered}
\left|f_{x} d x+f_{y} d y\right|^{2}=\left|f_{z} d z+f_{\bar{z}} d \bar{z}\right|^{2} \\
\quad=\left|f_{z}\right|^{2}\left|d z+\frac{f_{\bar{z}}}{f_{z}} d \bar{z}\right|^{2}
\end{gathered}
$$

Transforming fields of ellipses and Beltrami differentials

If σ_{0} is the standard metric $d x^{2}+d y^{2}=|d z|^{2}$ and g is holomorphic then write

$$
\begin{gathered}
f^{*} \sigma_{0}=\lambda_{1}\left|d z+\mu_{1} d \bar{z}\right|^{2} \\
g^{*} f^{*} \sigma_{0}=\lambda_{2}\left|d z+\mu_{2} d \bar{z}\right|^{2}
\end{gathered}
$$

Then

$$
\begin{aligned}
\mu_{2} & =\frac{\overline{g(z)}}{g(z)} \mu_{1} \circ g \\
\lambda_{2} & =\left|g^{\prime}\right| \lambda_{1} \circ g
\end{aligned}
$$

In particular,

$$
\left\|\mu_{2}\right\|_{\infty}=\left\|\mu_{1}\right\|_{\infty} .
$$

Also since

$$
D(f \circ g)^{T} D(f \circ g)=D g^{T}\left(D f^{T} D f\right) D g
$$

the major and minor axes for the ellipse at z for $g^{*} f^{*} \sigma_{0}$ map under $D g$ to those for $f^{*} \sigma$. If the major axis of the ellipse at z for $g^{*} f^{*} \sigma_{0}$ is in the direction of $\pm v(v \in \mathbb{C})$ then the direction for $f^{*} \sigma_{0}$ at $g(z)$ is $\pm g^{\prime}(z) v$.

The Riemann Mapping Theorem

Write

$$
D=\{z:|z|<1\}
$$

The classical Riemann mapping theorem (easy version) says that if U is an simply connected proper open subset of \mathbb{C}, then there exists a holomorphic bijection $\varphi: U \rightarrow D$.

One way to prove this (not the easiest) would be to find an orientation-preserving diffeomorphism $g: D \rightarrow U$, giving rise to a Riemannian metric $g^{*} \sigma_{0}$ on D. As before, σ_{0} denotes the standard metric $|d z|^{2}$ on U (or on any domain in \mathbb{C}). Then suppose we can find an o-p diffeomorphism $f: D \rightarrow D$ with

$$
f^{*} \sigma_{0}=\lambda g^{*} \sigma_{0}
$$

for a strictly positive function λ. Then

$$
\left(g^{-1}\right)^{*} f^{*} \sigma_{0}=\left(f \circ g^{-1}\right)^{*} \sigma_{0}=\lambda \sigma_{0}
$$

So

$$
D\left(f \circ g^{-1}\right)^{T} D(f \circ g)=\lambda I
$$

Then $D\left(f \circ g^{-1}\right)$ must be a multiple of an orthogonal matrix and of positve determinant. So the partial derivatives of $f \circ g^{-1}$ satisfy the Cauchy-Riemann equations, and $f \circ g^{-1}: U \rightarrow D$ is holomorphic.

The Measurable Riemann Mapping Theorem

This theorem has a long history. The version usually now used is that of L. Ahlfors and L.Bers in Annals of Math., 72 (1960), 385-404. There are versions for $\mathbb{C}, \overline{\mathbb{C}}$ and the unit disc D. Let U be any one of these three.

Theorem 1 Suppose that $\mu \in L^{\infty}(U)$ with $\|\mu\|_{\infty}<1$. Then there exists a homeomorphism $f: U \rightarrow U$ which is differentiable a.e., with partial derivatives locally L^{p} for some $p>2$ and

$$
\frac{f_{\bar{z}}}{f_{z}}=\mu
$$

That is, for some $\lambda>0$

$$
f^{*} \sigma_{0}=\lambda|d z+\mu d \bar{z}|^{2} .
$$

Moreover f is unique up to left composition with a Möbius transformation.
Such a homeomorphism f is quasi-conformal (and o-p). It is holomorphic if $\mu=0$ a.e.

Quasi-conformal Maps

The standard reference is Ahlfors' book
Lectures on Quasiconformal mappings
Take d to be the Euclidean metric if $D=\mathbb{C}$ or D and the spherical metric if $U=\overline{\mathbb{C}}$. Let $B(z, r)$ denote the ball of radius r centred on z in this metric. The simplest topological definition for a quasiconformal map is the following. $f: U \rightarrow U$ is quasiconformal if it is a homeomorphism and there exists a constant K_{1} such that for all $z \in U$ and each ball $B(z, r)$, there is r_{1} such that

$$
B\left(f(z), r_{1}\right) \subset f(B(z, r)) \subset B\left(f(z), K_{1} r_{1}\right)
$$

Ahlfors gives two definitions which are equivalent to this, and he proves their equivalence, but neither of them is this definition (for good reason).

Modulus of a topological rectangle

Any closed topological disc R in the plane with four marked points $x_{i}(1 \leq i \leq 4$ in anticlockwise direction) on the boundary is homeomorphic to a rectangle, with the four marked points mapping to the vertices. So R can therefore be referred to as a topological rectangle. A strengthening of the Riemann mapping theorem imples that this homeomorphism can be realised by a map which is holomorphic on the interior. For unique numbers $a>0, b>0$ there is a homeomorphism

$$
\varphi: R \rightarrow\{x+i y: 0 \leq x \leq a, 0 \leq y \leq b\}
$$

whjich is holmorphic on the interior of R and mapping x_{1} to 0 , x_{2} to a, x_{3} to $a+i b$, and x_{4} to $i b$. a / b is then defined to be the modulus $\bmod (R)$ of R.

Ahlfors' definitions

Definition 1 A homeomorphism $\varphi: U \rightarrow U$ is K
-quasiconformal if for any topological rectangle R

$$
\frac{\bmod (R)}{K} \leq \bmod (R) \leq K \bmod (R)
$$

Definition 2 A homeomorphism $\varphi: U \rightarrow U$ is K
-quasiconformal if partial derivatives f_{x}, f_{y} exist a.e. in U, and are locally L^{1} along a.e. horizontal line in U, and a.e. vertical line in U, and

$$
\left|f_{\bar{z}}\right| \leq k\left|f_{z}\right|
$$

where

$$
k=\frac{K-1}{K+1} .
$$

Continuity, Differentiability, and Holomorphicity

The Ahlfors Bers paper is famous for results about families of Beltrami differentials which vary continuously, differentiably or holomorphically. We keep to the notation of Theorem 1.

Theorem 2 Let $\lambda \rightarrow \mu_{\lambda}: \Lambda \rightarrow L^{\infty}(U)(\lambda \in \Lambda$ be a continuous family of Beltrami differentials with $\left\|\mu_{\lambda}\right\|_{\infty} \leq k$ for some $k<1$. Then $\lambda \rightarrow f_{\mu_{\lambda}}$ is:

- locally uniformly continuous in $C(U)$
- locally Hölder on $C^{\alpha}(U)$ for some $\alpha>0$
- the partial derivatives $\left(f_{\mu_{\lambda}}\right)_{x}$ and $\left(f_{\mu_{\lambda}}\right)_{y}$ are continuous in the local L ${ }^{p}$ topology.
If $\lambda \rightarrow \mu_{\lambda}: \Lambda$ is locally uniformly differentiable/holomorphic in L^{∞}, then $\lambda \rightarrow f_{\mu_{\lambda}}$ is differentiable/holomorphic with respect to the same list of seminorms.

In particular this theorem implies that if $\lambda \rightarrow \mu_{\lambda}: \Lambda \rightarrow L^{\infty}(U)$ is continuous/holmorphic, then so is

$$
\lambda \rightarrow f_{\mu_{\lambda}}(z): \Lambda \rightarrow U
$$

for each $z \in U$.

