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Basics about holomorphic maps

Recall some facts about holomorphic maps. If

z = x + iy

f (z) = u(x , y) + iv(x , y)

then
f ′(z) = ux + ivx = vy − iuy .



Considered as a function from R2 to R2, the derivative is(
ux uy
vx vy

)
=

(
ux −vx
vx ux

)
If f ′(z) 6= 0 then u2

x + v2
x 6= 0. Lengths are not usually

preserved, but angles are.
The action of the derivative at z0 is multiplication by f ′(z0).



Conversely, suppose that f : U(⊂ R2)→ R2 is continuous, and
continuously differentiable except at finitely many points, and
the dervative Df is invertible, has positive determinant and
preserves angles except at finitely many points. Write
f = (u, v). The derivative Df is(

ux uy
vx vy

)
If angles are to be preserved then this must be of the form(

r cos θ −r sin θ
r sin θ r cos θ

)



So the Cauchy-Riemann equations

ux = vy ,

vx = −uy

are satisfied, and hence f is holomorphic, except possibly at
finitely many points. But since f is continuous, any singularities
are removable and f is holomorphic on U.



How to write Riemannian metrics in the plane

The usual classical form of writing a Riemannian metric in the
plane is

adx2 + 2bdxdy + cdy2

where a, b, c are real-valued functions of (x , y), and the
symmetric matrix (

a b
b c

)
is positive definite. For this we need

a + c > 0,

ac − b2 > 0.



The classical notation is suggested by the formula for the length
of a curve (x(t), y(t)) (t ∈ I) in this metric:∫

I

√
a(dx/dt)2 + 2b(dx/dt)(dy/dt) + c(dy/dt)2dt



Field of Ellipses

A 2× 2 symmetric positive definite matrix A defines an ellipse
with equation (

x y
)

A
(

x
y

)
= 1

The constant on the righthand side is unimportant. Note that

A = PT ∆P,

with P orthogonal and ∆ diagonal. Interchanging the rows of P
if necessary, we can assume that P has determinant 1.



Then we get the standard form

(
X Y

)
∆

(
X
Y

)
= 1

for the ellipse by making the change of variable(
X
Y

)
= P

(
x
y

)
The major and minor axes of the ellipse are orthogonal to each
other and are given by the columns of U (not necessarily in that
order) provided the eigenvalues of A are distinct.
This association of an ellipse (up to scale) to each point in the
domain is called a field of ellipses. The major axis at each point
— up to direction – gives a line field. It is undefined when the
eigenvalues of A are equal.



Complex form of a Riemannian metric

In formulating the measurable Riemann mapping theorem it is
more convenient to write the metric adx2 + 2bdxdy + cdy2

in another form:

λ|dz + µdz|2 = λ|µ|.|µ−1dz + dz|2

where λ > 0 and |µ| < 1 and λ and µ = µ1 + iµ2 are functions
of z. the function µ is called the Beltrami differential (of the
Riemannian metric). To get between the two:

2λµ2 = b,

λ(1 + |µ|2 + 2µ1) = a,

λ(1 + |µ|2 − 2µ1) = c.



Then
ac − b2 = λ2(1− |µ|2)2

and
ac − b2

(a + c)2 =
1− |µ|2

1 + |µ|2
.

So µ is bounded from 1 if the ratio of the eigenvalues of A is
bounded above and below, where

A =

(
a b
b c

)
There is a relation between the argument of µ(z) and the major
axis of the ellipse associated to the metric at z. If ±v is the
direction of the major axis then

arg(µ) = arg(v−2).



Transforming Riemannian metrics

If f : U → V is a diffeomorphism between open subsets of R2,
and σ is a Riemannian metric on V then we can define a
Riemannian metric f ∗σ on U by the following formula. If σ is
given in classical terminology by adx2 + 2bdxdy + cdy2 then
f ∗σ is given by

(
dx dy

)
Df T

(
a b
b c

)
Df
(

dx
dy

)
where Df is the 2× 2 matrix representing the derivative. If
`1(γ1) denotes length of a path γ1 with respect to σ and `2(γ2)
denotes length of a path γ2 with respect to f ∗(σ) then

`2(γ) = `1(f ◦ γ)

This follows from the definition of f ∗σ and the chain rule for
differentiating f ◦ γ.



Note that f ∗ is a contravariant functor, that is

(f ◦ g)∗σ = g∗f ∗σ

(where defined).



Transforming the standard metric in the complex
notation

The standard metric σ0 is dx2 + dy2 = |dz|2. Suppose that
f : U → V is a diffeomorphism between open subsets U and V
of C. So f is a complex-valued function on a complex domain,
and the same is true for the partial derivatives fx and fy . Write

fz =
1
2

(fx − ify )

fz =
1
2

(fx + ify )

If f is holomorphic, then, by the Cauchy-Riemann equations,
fz = f ′ and fz = 0. Write

dz = dx + idy

dz = dx − idy

Then
fxdx + fydy = fzdz + fzdz



Then f ∗σ0 is given by

|fxdx + fydy |2 = |fzdz + fzdz|2

= |fz |2
∣∣∣∣dz +

fz
fz

dz
∣∣∣∣2



Transforming fields of ellipses and Beltrami
differentials

If σ0 is the standard metric dx2 + dy2 = |dz|2 and g is
holomorphic then write

f ∗σ0 = λ1|dz + µ1dz|2

g∗f ∗σ0 = λ2|dz + µ2dz|2

Then

µ2 =
g(z)

g(z)
µ1 ◦ g

λ2 = |g′|λ1 ◦ g

In particular,
‖µ2‖∞ = ‖µ1‖∞.



Also since

D(f ◦ g)T D(f ◦ g) = DgT (Df T Df )Dg

the major and minor axes for the ellipse at z for g∗f ∗σ0 map
under Dg to those for f ∗σ. If the major axis of the ellipse at z for
g∗f ∗σ0 is in the direction of ±v (v ∈ C) then the direction for
f ∗σ0 at g(z) is ±g′(z)v .



The Riemann Mapping Theorem

Write
D = {z : |z| < 1}

The classical Riemann mapping theorem (easy version) says
that if U is an simply connected proper open subset of C, then
there exists a holomorphic bijection ϕ : U → D.



One way to prove this (not the easiest) would be to find an
orientation-preserving diffeomorphism g : D → U, giving rise to
a Riemannian metric g∗σ0 onD . As before, σ0 denotes the
standard metric |dz|2 on U (or on any domain in C). Then
suppose we can find an o-p diffeomorphism f : D → D with

f ∗σ0 = λg∗σ0

for a strictly positive function λ. Then

(g−1)∗f ∗σ0 = (f ◦ g−1)∗σ0 = λσ0

So
D(f ◦ g−1)T D(f ◦ g) = λI



Then D(f ◦ g−1) must be a multiple of an orthogonal matrix and
of positve determinant. So the partial derivatives of f ◦ g−1

satisfy the Cauchy-Riemann equations, and f ◦ g−1 : U → D is
holomorphic.



The Measurable Riemann Mapping Theorem

This theorem has a long history. The version usually now used
is that of L. Ahlfors and L.Bers in Annals of Math., 72 (1960),
385-404. There are versions for C, C and the unit disc D. Let U
be any one of these three.



Theorem 1 Suppose that µ ∈ L∞(U) with ‖µ‖∞ < 1. Then
there exists a homeomorphism f : U → U which is differentiable
a.e., with partial derivatives locally Lp for some p > 2 and

fz
fz

= µ

That is, for some λ > 0

f ∗σ0 = λ|dz + µdz|2.

Moreover f is unique up to left composition with a Möbius
transformation.
Such a homeomorphism f is quasi-conformal (and o-p). It is
holomorphic if µ = 0 a.e.



Quasi-conformal Maps

The standard reference is Ahlfors’ book
Lectures on Quasiconformal mappings
Take d to be the Euclidean metric if D = C or D and the
spherical metric if U = C. Let B(z, r) denote the ball of radius r
centred on z in this metric. The simplest topological definition
for a quasiconformal map is the following. f : U → U is
quasiconformal if it is a homeomorphism and there exists a
constant K1 such that for all z ∈ U and each ball B(z, r), there
is r1 such that

B(f (z), r1) ⊂ f (B(z, r)) ⊂ B(f (z),K1r1)



Ahlfors gives two definitions which are equivalent to this, and
he proves their equivalence, but neither of them is this definition
(for good reason).



Modulus of a topological rectangle

Any closed topological disc R in the plane with four marked
points xi (1 ≤ i ≤ 4 in anticlockwise direction) on the boundary
is homeomorphic to a rectangle, with the four marked points
mapping to the vertices. So R can therefore be referred to as a
topological rectangle. A strengthening of the Riemann mapping
theorem imples that this homeomorphism can be realised by a
map which is holomorphic on the interior. For unique numbers
a > 0, b > 0 there is a homeomorphism

ϕ : R → {x + iy : 0 ≤ x ≤ a,0 ≤ y ≤ b}

whjich is holmorphic on the interior of R and mapping x1 to 0,
x2 to a, x3 to a + ib, and x4 to ib. a/b is then defined to be the
modulus mod(R) of R.



Ahlfors’ definitions

Definition 1 A homeomorphism ϕ : U → U is K
-quasiconformal if for any topological rectangle R

mod(R)

K
≤ mod(R) ≤ K mod(R).

Definition 2 A homeomorphism ϕ : U → U is K
-quasiconformal if partial derivatives fx , fy exist a.e. in U, and
are locally L1along a.e. horizontal line in U, and a.e. vertical
line in U, and

|fz | ≤ k |fz |

where
k =

K − 1
K + 1

.



Continuity, Differentiability, and Holomorphicity

The Ahlfors Bers paper is famous for results about families of
Beltrami differentials which vary continuously, differentiably or
holomorphically. We keep to the notation of Theorem 1.



Theorem 2 Let λ→ µλ : Λ→ L∞(U) (λ ∈ Λ be a continuous
family of Beltrami differentials with ‖µλ‖∞ ≤ k for some k < 1.
Then λ→ fµλ

is:
I locally uniformly continuous in C(U)

I locally Hölder on Cα(U) for some α > 0
I the partial derivatives (fµλ

)x and (fµλ
)y are continuous in

the local Lp topology.
If λ→ µλ : Λ is locally uniformly differentiable/holomorphic in
L∞, then λ→ fµλ

is differentiable/holomorphic with respect to
the same list of seminorms.



In particular this theorem implies that if λ→ µλ : Λ→ L∞(U) is
continuous/holmorphic, then so is

λ→ fµλ
(z) : Λ→ U

for each z ∈ U.


