The quasi-conformal deformation space of a Kleinian group

Mary Rees

University of Liverpool

January 2008

▶ Throughout this lecture, Γ_0 is a finitely generated group and $\rho: \Gamma_0 \to \Gamma \leq PSL(2,\mathbb{C})$ is a group isomorphism.

- ▶ Throughout this lecture, Γ_0 is a finitely generated group and $\rho: \Gamma_0 \to \Gamma \leq PSL(2,\mathbb{C})$ is a group isomorphism.
- ▶ If Γ_0 has a generating set with r elements, then we can identify the set of all (Γ, ρ) with a closed affine subvariety of $(PSL(2, \mathbb{C}))^r$.

- ▶ Throughout this lecture, Γ_0 is a finitely generated group and $\rho: \Gamma_0 \to \Gamma \leq PSL(2,\mathbb{C})$ is a group isomorphism.
- ▶ If Γ_0 has a generating set with r elements, then we can identify the set of all (Γ, ρ) with a closed affine subvariety of $(PSL(2, \mathbb{C}))^r$.
- We are interested in the case when Γ is Kleinian, that is discrete.

Definition. (Γ_2, ρ_2) is a *quasi-conformal deformation* of (Γ_1, ρ_1) if there is a quasiconformal homeomorphism φ of $\overline{\mathbb{C}}$ such that $\rho_2(\gamma_0) \circ \varphi = \varphi \circ \rho_1(\gamma_0)$ for all $\gamma_0 \in \Gamma_0$.

Definition. (Γ_2, ρ_2) is a *quasi-conformal deformation* of (Γ_1, ρ_1) if there is a quasiconformal homeomorphism φ of $\overline{\mathbb{C}}$ such that $\rho_2(\gamma_0) \circ \varphi = \varphi \circ \rho_1(\gamma_0)$ for all $\gamma_0 \in \Gamma_0$.

▶ In this case, $\gamma \to \varphi \circ \gamma \circ \varphi^{-1} : \Gamma_1 \to \Gamma_2$ is a group isomorphism.

Definition. (Γ_2, ρ_2) is a *quasi-conformal deformation* of (Γ_1, ρ_1) if there is a quasiconformal homeomorphism φ of $\overline{\mathbb{C}}$ such that $\rho_2(\gamma_0) \circ \varphi = \varphi \circ \rho_1(\gamma_0)$ for all $\gamma_0 \in \Gamma_0$.

- ▶ In this case, $\gamma \to \varphi \circ \gamma \circ \varphi^{-1} : \Gamma_1 \to \Gamma_2$ is a group isomorphism.
- The derivative Dφ, which is defined a.e., defines a Γ₁-invariant field of ellipses by

$$\underline{\mathbf{x}}^T \mathbf{D} \varphi_{\mathbf{z}}^T \mathbf{D} \varphi_{\mathbf{z}} \underline{\mathbf{x}} = \text{const.}$$

Definition. (Γ_2, ρ_2) is a *quasi-conformal deformation* of (Γ_1, ρ_1) if there is a quasiconformal homeomorphism φ of $\overline{\mathbb{C}}$ such that $\rho_2(\gamma_0) \circ \varphi = \varphi \circ \rho_1(\gamma_0)$ for all $\gamma_0 \in \Gamma_0$.

- ▶ In this case, $\gamma \to \varphi \circ \gamma \circ \varphi^{-1} : \Gamma_1 \to \Gamma_2$ is a group isomorphism.
- The derivative Dφ, which is defined a.e., defines a Γ₁-invariant field of ellipses by

$$\underline{\mathbf{x}}^T \mathbf{D} \varphi_{\mathbf{z}}^T \mathbf{D} \varphi_{\mathbf{z}} \underline{\mathbf{x}} = \text{const.}$$

This also defines a Γ₁- invariant line field, taking the the major axis or 0 depending on whether the ellipse is not, or is, a circle.

Definition. (Γ_2, ρ_2) is a *quasi-conformal deformation* of (Γ_1, ρ_1) if there is a quasiconformal homeomorphism φ of $\overline{\mathbb{C}}$ such that $\rho_2(\gamma_0) \circ \varphi = \varphi \circ \rho_1(\gamma_0)$ for all $\gamma_0 \in \Gamma_0$.

- ▶ In this case, $\gamma \to \varphi \circ \gamma \circ \varphi^{-1} : \Gamma_1 \to \Gamma_2$ is a group isomorphism.
- The derivative Dφ, which is defined a.e., defines a Γ₁-invariant field of ellipses by

$$\underline{\mathbf{x}}^T \mathbf{D} \varphi_{\mathbf{z}}^T \mathbf{D} \varphi_{\mathbf{z}} \underline{\mathbf{x}} = \text{const.}$$

- This also defines a Γ₁- invariant line field, taking the the major axis or 0 depending on whether the ellipse is not, or is, a circle.
- ▶ Alternatively, $\varphi_{\overline{z}}/\varphi_z$ is a Γ_1 -invariant Beltrami-differential.

Stable representations

Stable representations

Definition.A group Γ, ρ is *stable* if for any representation $\rho: \Gamma_0 \to \Gamma$ and any (Γ', ρ') sufficiently close to (Γ, ρ) there is a homeomorphism $\varphi: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ such that

$$\varphi(\rho(\gamma).z) = \rho'(\gamma'.\varphi(z))$$

for all $\gamma \in \Gamma_0$ and $z \in \overline{\mathbb{C}}$. It is relatively straightforward to prove that any finitely generated Kleinian group Γ which acts hyperbolically on L_{Γ} is stable. The following theorem is due to Sullivan.

Stable representations

Definition.A group Γ, ρ is *stable* if for any representation $\rho : \Gamma_0 \to \Gamma$ and any (Γ', ρ') sufficiently close to (Γ, ρ) there is a homeomorphism $\varphi : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ such that

$$\varphi(\rho(\gamma).z) = \rho'(\gamma'.\varphi(z))$$

for all $\gamma \in \Gamma_0$ and $z \in \overline{\mathbb{C}}$. It is relatively straightforward to prove that any finitely generated Kleinian group Γ which acts hyperbolically on L_{Γ} is stable. The following theorem is due to Sullivan.

Theorem

If Γ is stable then Γ acts hyperbolically on L_{Γ} .

The Sullivan-Mane-Sad λ-lemma, which implies that all nearby maps are actually quasiconformally conjugate:

▶ The Sullivan-Mane-Sad λ -lemma, which implies that all nearby maps are actually quasiconformally conjugate: λ -Lemma If $\Lambda \subset \mathbb{C}^n$ is open and $X \subset C$ with $\Phi(\underline{0}, z) = z$ and $\Phi : \Lambda \times X \to \mathbb{C} : (\lambda, z) \mapsto \Phi(\lambda, z)$ is holomorphic in λ , and injective on X for each fixed λ , then the map $z \mapsto \Phi(\lambda, z)$ extends to a quasi-conformal homeomorphism from X to its image.

- ▶ The Sullivan-Mane-Sad λ -lemma, which implies that all nearby maps are actually quasiconformally conjugate: λ -Lemma If $\Lambda \subset \mathbb{C}^n$ is open and $X \subset C$ with $\Phi(\underline{0}, z) = z$ and $\Phi : \Lambda \times X \to \mathbb{C} : (\lambda, z) \mapsto \Phi(\lambda, z)$ is holomorphic in λ , and injective on X for each fixed λ , then the map $z \mapsto \Phi(\lambda, z)$ extends to a quasi-conformal homeomorphism from \overline{X} to its image.
- An argument due to Thurston, which shows that the representation space is bounded below by a sum of numbers, one corresponding to each topological end of the manifold. This, in turn, depends the existence, in hyperbolic 3-manifold with finitely generated fundamental group of the compact Scott core;

- ▶ The Sullivan-Mane-Sad λ -lemma, which implies that all nearby maps are actually quasiconformally conjugate: λ -Lemma If $\Lambda \subset \mathbb{C}^n$ is open and $X \subset C$ with $\Phi(\underline{0}, z) = z$ and $\Phi : \Lambda \times X \to \mathbb{C} : (\lambda, z) \mapsto \Phi(\lambda, z)$ is holomorphic in λ , and injective on X for each fixed λ , then the map $z \mapsto \Phi(\lambda, z)$ extends to a quasi-conformal homeomorphism from \overline{X} to its image.
- An argument due to Thurston, which shows that the representation space is bounded below by a sum of numbers, one corresponding to each topological end of the manifold. This, in turn, depends the existence, in hyperbolic 3-manifold with finitely generated fundamental group of the compact Scott core;
- ► The following theorem (also due to Sullivan)

Invariant line fields

Invariant line fields

Theorem

Let Γ be a finitely generated Kleinian group. Then any Γ -invariant line field is supported a.e. on the domain of discontinuity Ω_{Γ} .

The analogues of Sullivan's Theorems for holomorphic maps, even for polynomials, is still unknown, although quasi-conformal rigidity is now known in some cases.

▶ The Ahlfors Conjecture, that the limit set of a Kleinian group is either $\overline{\mathbb{C}}$ or of zero measure, has now been proved. This does not imply Sullivan's theorem in the case when the limit set is $\overline{\mathbb{C}}$.

- ▶ The Ahlfors Conjecture, that the limit set of a Kleinian group is either $\overline{\mathbb{C}}$ or of zero measure, has now been proved. This does not imply Sullivan's theorem in the case when the limit set is $\overline{\mathbb{C}}$.
- ► The analogue of the Ahlfors conjecture is now known to be false for polynomials (Buff and Cheritat).

- ▶ The Ahlfors Conjecture, that the limit set of a Kleinian group is either $\overline{\mathbb{C}}$ or of zero measure, has now been proved. This does not imply Sullivan's theorem in the case when the limit set is $\overline{\mathbb{C}}$.
- The analogue of the Ahlfors conjecture is now known to be false for polynomials (Buff and Cheritat).
- ▶ An eventual corollary of Sullivan's No-invariant line fields, and the Ahlfors' Finiteness Theorem is that the quasi-conformal deformation space of (Γ, ρ) is a finite-dimensional manifold, whose dimension can be computed.

Definition. The action of Γ on L_{Γ} is said to be *recurrent* if for any set $U \subset L_{\Gamma}$ of positive Lebesgue measure, there exists $\gamma \in \Gamma$ with $\gamma \neq I$ such that $U \cap \gamma.U$ has positive measure.

Definition. The action of Γ on L_{Γ} is said to be *recurrent* if for any set $U \subset L_{\Gamma}$ of positive Lebesgue measure, there exists $\gamma \in \Gamma$ with $\gamma \neq I$ such that $U \cap \gamma.U$ has positive measure.

If the action of Γ on L is not recurrent then there exists a set U of positive measure such that all the sets γ.U are disjoint. We then write

$$\Gamma.U = \cup_{\gamma \in \Gamma} \gamma.U$$

Definition. The action of Γ on L_{Γ} is said to be *recurrent* if for any set $U \subset L_{\Gamma}$ of positive Lebesgue measure, there exists $\gamma \in \Gamma$ with $\gamma \neq I$ such that $U \cap \gamma.U$ has positive measure.

If the action of Γ on L is not recurrent then there exists a set U of positive measure such that all the sets γ.U are disjoint. We then write

$$\Gamma.U = \cup_{\gamma \in \Gamma} \gamma.U$$

In this case, there is a positive measure set V which is of the form Γ.U for some such U, which contains a.e. point of Γ.U₁, for any measurable set U₁ such that the sets γ.U₁ are all disjoint.

Definition. The action of Γ on L_{Γ} is said to be *recurrent* if for any set $U \subset L_{\Gamma}$ of positive Lebesgue measure, there exists $\gamma \in \Gamma$ with $\gamma \neq I$ such that $U \cap \gamma.U$ has positive measure.

If the action of Γ on L is not recurrent then there exists a set U of positive measure such that all the sets γ.U are disjoint. We then write

$$\Gamma.U = \cup_{\gamma \in \Gamma} \gamma.U$$

- ▶ In this case, there is a positive measure set V which is of the form $\Gamma.U$ for some such U, which contains a.e. point of $\Gamma.U_1$, for any measurable set U_1 such that the sets $\gamma.U_1$ are all disjoint.
- ▶ Such a set V, which is defined modulo sets of measure 0, is called the *dissipative part* of the action of Γ on L_{Γ} . the complement is the *recurrent part*

Definition. The action of Γ on L_{Γ} is said to be *recurrent* if for any set $U \subset L_{\Gamma}$ of positive Lebesgue measure, there exists $\gamma \in \Gamma$ with $\gamma \neq I$ such that $U \cap \gamma.U$ has positive measure.

If the action of Γ on L is not recurrent then there exists a set U of positive measure such that all the sets γ.U are disjoint. We then write

$$\Gamma.U = \cup_{\gamma \in \Gamma} \gamma.U$$

- ▶ In this case, there is a positive measure set V which is of the form $\Gamma.U$ for some such U, which contains a.e. point of $\Gamma.U_1$, for any measurable set U_1 such that the sets $\gamma.U_1$ are all disjoint.
- ▶ Such a set V, which is defined modulo sets of measure 0, is called the *dissipative part* of the action of Γ on L_{Γ} . the complement is the *recurrent part*

Sullivan proved the absence of invariant line fields by the following reduction.

Lemma

Let Γ be a finitely generated Kleinian group. Then the action of Γ on L_{Γ} has no dissipative part modulo sets of measure 0. That is, the action is recurrent.

Sullivan proved the absence of invariant line fields by the following reduction.

Lemma

Let Γ be a finitely generated Kleinian group. Then the action of Γ on L_{Γ} has no dissipative part modulo sets of measure 0. That is, the action is recurrent.

Proof

The proof is by contradiction. We assume that there is a dissipative part.

Sullivan proved the absence of invariant line fields by the following reduction.

Lemma

Let Γ be a finitely generated Kleinian group. Then the action of Γ on L_{Γ} has no dissipative part modulo sets of measure 0. That is, the action is recurrent.

Proof

- The proof is by contradiction. We assume that there is a dissipative part.
- ▶ This gives an infinite-dimensional space of Γ-invariant Beltrami differentials on $\overline{\mathbb{C}}$.

Sullivan proved the absence of invariant line fields by the following reduction.

Lemma

Let Γ be a finitely generated Kleinian group. Then the action of Γ on L_{Γ} has no dissipative part modulo sets of measure 0. That is, the action is recurrent.

Proof

- The proof is by contradiction. We assume that there is a dissipative part.
- ▶ This gives an infinite-dimensional space of Γ-invariant Beltrami differentials on $\overline{\mathbb{C}}$.
- This, in turn, gives an infinite-dimensional space of Kleinian groups isomorphic to Γ, which is impossible.

No dissipative part

Sullivan proved the absence of invariant line fields by the following reduction.

Lemma

Let Γ be a finitely generated Kleinian group. Then the action of Γ on L_{Γ} has no dissipative part modulo sets of measure 0. That is, the action is recurrent.

Proof

- The proof is by contradiction. We assume that there is a dissipative part.
- ▶ This gives an infinite-dimensional space of Γ-invariant Beltrami differentials on $\overline{\mathbb{C}}$.
- This, in turn, gives an infinite-dimensional space of Kleinian groups isomorphic to Γ, which is impossible.

Suppose for contradiction that there is a set *U* ⊂ *L*_Γ of positive measure such that the sets *γ*.*U* are all disjoint.

- Suppose for contradiction that there is a set *U* ⊂ *L*_Γ of positive measure such that the sets *γ*.*U* are all disjoint.
- ▶ Then the space of Beltrami differentials supported on U is infinite dimensional. To find an infinite linearly independent set we can for example choose disjoint positive measure sets U_j in U and let $\mu_j \in L^{\infty}(U_j)$ with $\|\mu_j\| \leq \frac{1}{2}$. Then

$$\{\sum_{j} \alpha_{j} \mu_{j} : \alpha_{j} \in \mathbb{C}, \sum_{j} |\alpha_{j}| \le 1\}$$

is an infinite-dimensional family of Beltrami differentials on $\it U$.

- Suppose for contradiction that there is a set *U* ⊂ *L*_Γ of positive measure such that the sets *γ*.*U* are all disjoint.
- ▶ Then the space of Beltrami differentials supported on U is infinite dimensional. To find an infinite linearly independent set we can for example choose disjoint positive measure sets U_j in U and let $\mu_j \in L^{\infty}(U_j)$ with $\|\mu_j\| \leq \frac{1}{2}$. Then

$$\{\sum_{j} \alpha_{j} \mu_{j} : \alpha_{j} \in \mathbb{C}, \sum_{j} |\alpha_{j}| \leq 1\}$$

is an infinite-dimensional family of Beltrami differentials on U.

▶ Any Beltrami differential μ on U extends to a unique Γ-invariant Beltrami-differential on Γ.U ($\gamma^*\mu = \mu$ for all $\gamma \in \Gamma$) and then to $\overline{\mathbb{C}}$ by taking it to be 0 on the complement of Γ.U.

We start with a Γ-invariant Beltrami differential μ .

- ▶ We start with a Γ-invariant Beltrami differential μ .
- Let φ_{μ} be the quasi-conformal homeomorphism with $\varphi_{\mu}^{*}(0) = \mu$, that is

$$(\varphi_{\mu})_{\overline{Z}} = \mu(\varphi_{\mu})_{Z}.$$

- ▶ We start with a Γ-invariant Beltrami differential μ .
- Let φ_{μ} be the quasi-conformal homeomorphism with $\varphi_{\mu}^{*}(0) = \mu$, that is

$$(\varphi_{\mu})_{\overline{z}} = \mu(\varphi_{\mu})_{z}.$$

Note that this implies $\mu \mapsto \varphi_{\mu}$ is injective.

- ▶ We start with a Γ-invariant Beltrami differential μ .
- Let φ_{μ} be the quasi-conformal homeomorphism with $\varphi_{\mu}^{*}(\mathbf{0})=\mu$, that is

$$(\varphi_{\mu})_{\overline{z}} = \mu(\varphi_{\mu})_{z}.$$

Note that this implies $\mu \mapsto \varphi_{\mu}$ is injective.

▶ The homeomorphism φ_{μ} is unique if we normalise it to fix 0, 1 and ∞ .

- ▶ We start with a Γ-invariant Beltrami differential μ.
- Let φ_{μ} be the quasi-conformal homeomorphism with $\varphi_{\mu}^{*}(0) = \mu$, that is

$$(\varphi_{\mu})_{\overline{Z}} = \mu(\varphi_{\mu})_{Z}.$$

Note that this implies $\mu \mapsto \varphi_{\mu}$ is injective.

- ▶ The homeomorphism φ_{μ} is unique if we normalise it to fix 0, 1 and ∞ .
- ► For any $\gamma \in \Gamma$, $\varphi_{\mu} \circ \gamma \circ \varphi_{\mu}^{-1}$ is a Möbius transformation because it is quasi-conformal and

$$(\varphi_{\mu} \circ \gamma \circ \varphi_{\mu}^{-1})^* 0 = (\gamma \circ \varphi_{\mu}^{-1})^* (\mu) = (\varphi_{\mu}^{-1})^* (\mu) = 0.$$

- ▶ We start with a Γ-invariant Beltrami differential μ.
- Let φ_{μ} be the quasi-conformal homeomorphism with $\varphi_{\mu}^{*}(0) = \mu$, that is

$$(\varphi_{\mu})_{\overline{Z}} = \mu(\varphi_{\mu})_{Z}.$$

Note that this implies $\mu \mapsto \varphi_{\mu}$ is injective.

- ▶ The homeomorphism φ_{μ} is unique if we normalise it to fix 0, 1 and ∞ .
- ► For any $\gamma \in \Gamma$, $\varphi_{\mu} \circ \gamma \circ \varphi_{\mu}^{-1}$ is a Möbius transformation because it is quasi-conformal and

$$(\varphi_{\mu} \circ \gamma \circ \varphi_{\mu}^{-1})^* 0 = (\gamma \circ \varphi_{\mu}^{-1})^* (\mu) = (\varphi_{\mu}^{-1})^* (\mu) = 0.$$

► So φ_{μ} ∘ Γ ∘ φ_{μ}^{-1} is a Kleinian group Γ_{μ}.

- ▶ We start with a Γ-invariant Beltrami differential μ.
- Let φ_{μ} be the quasi-conformal homeomorphism with $\varphi_{\mu}^{*}(0) = \mu$, that is

$$(\varphi_{\mu})_{\overline{Z}} = \mu(\varphi_{\mu})_{Z}.$$

Note that this implies $\mu \mapsto \varphi_{\mu}$ is injective.

- ▶ The homeomorphism φ_{μ} is unique if we normalise it to fix 0, 1 and ∞ .
- ► For any $\gamma \in \Gamma$, $\varphi_{\mu} \circ \gamma \circ \varphi_{\mu}^{-1}$ is a Möbius transformation because it is quasi-conformal and

$$(\varphi_{\mu} \circ \gamma \circ \varphi_{\mu}^{-1})^* 0 = (\gamma \circ \varphi_{\mu}^{-1})^* (\mu) = (\varphi_{\mu}^{-1})^* (\mu) = 0.$$

► So φ_{μ} ∘ Γ ∘ φ_{μ}^{-1} is a Kleinian group Γ_{μ}.

► The map $\mu \mapsto \Gamma_{\mu}$ is holomorphic in μ because $\varphi_{\mu} \circ \gamma \circ \varphi_{\mu}^{-1}$ maps 0, ∞ and 1 to $\varphi_{\mu}(\gamma.0)$, $\varphi_{\mu}(\gamma.\infty)$ and $\varphi_{\mu}(\gamma.1)$, and these are holomorphic in μ by the Measurable Riemann Mapping Theorem.

- ▶ The map $\mu \mapsto \Gamma_{\mu}$ is holomorphic in μ because $\varphi_{\mu} \circ \gamma \circ \varphi_{\mu}^{-1}$ maps $0, \infty$ and 1 to $\varphi_{\mu}(\gamma.0), \varphi_{\mu}(\gamma.\infty)$ and $\varphi_{\mu}(\gamma.1)$, and these are holomorphic in μ by the Measurable Riemann Mapping Theorem.
- ▶ Since the map $\mu \mapsto \varphi_{\mu}$ is injective, the map $\mu \mapsto \Gamma_{\mu}$ is also injective.

- ► The map $\mu \mapsto \Gamma_{\mu}$ is holomorphic in μ because $\varphi_{\mu} \circ \gamma \circ \varphi_{\mu}^{-1}$ maps $0, \infty$ and 1 to $\varphi_{\mu}(\gamma.0), \varphi_{\mu}(\gamma.\infty)$ and $\varphi_{\mu}(\gamma.1)$, and these are holomorphic in μ by the Measurable Riemann Mapping Theorem.
- ▶ Since the map $\mu \mapsto \varphi_{\mu}$ is injective, the map $\mu \mapsto \Gamma_{\mu}$ is also injective.

For if $\Gamma_{\mu_1} = \Gamma_{\mu_2}$ and $\varphi_{\mu_1}^{-1} \circ \varphi_{\mu_2} = \varphi$, then $\varphi(\gamma.z) = \gamma.\varphi(z)$ for all $z \in \mathbb{C}$. It follows that φ fixes all fixed points of hyperbolic elements of Γ and must be the identity on L_{Γ} . Since φ is holomorphic on Ω_{Γ} , it is holomorphic on $\overline{\mathbb{C}}$ and must be the identity. So $\varphi_{\mu_1} = \varphi_{\mu_2}$ and $\mu_1 = \mu_2$.

▶ Any holomorphic (or C¹) map from one manifold to another is a submersion onto a submanifold, restricted to any open set on which the rank of the derivative is constant.

- ► Any holomorphic (or C¹) map from one manifold to another is a submersion onto a submanifold, restricted to any open set on which the rank of the derivative is constant.
- ▶ Hence, if $μ_λ$ is any holomorphic family of Beltrami differentials parametrised by an open set Λ of some \mathbb{C}^n then the map $Φ: λ → Γ_{μ_λ}$ is a diffeomorphism restricted to the subset of Λ on which the derivative of Φ has maximal rank.

- ▶ Any holomorphic (or C¹) map from one manifold to another is a submersion onto a submanifold, restricted to any open set on which the rank of the derivative is constant.
- ▶ Hence, if $μ_λ$ is any holomorphic family of Beltrami differentials parametrised by an open set Λ of some \mathbb{C}^n then the map $Φ: λ → Γ_{μ_λ}$ is a diffeomorphism restricted to the subset of Λ on which the derivative of Φ has maximal rank.
- Hence

$$dim\Phi(\Lambda))\geq dim(\Lambda).$$

- ▶ Any holomorphic (or C¹) map from one manifold to another is a submersion onto a submanifold, restricted to any open set on which the rank of the derivative is constant.
- ▶ Hence, if $μ_λ$ is any holomorphic family of Beltrami differentials parametrised by an open set Λ of some \mathbb{C}^n then the map $Φ: λ → Γ_{μ_λ}$ is a diffeomorphism restricted to the subset of Λ on which the derivative of Φ has maximal rank.
- Hence

$$dim\Phi(\Lambda)) \geq dim(\Lambda).$$

▶ The dimension of Λ can be taken arbitrarily large and the (complex) dimension of $\Phi(\Lambda)$ is bounded by three times the number of generators of Γ.

- ▶ Any holomorphic (or C¹) map from one manifold to another is a submersion onto a submanifold, restricted to any open set on which the rank of the derivative is constant.
- ▶ Hence, if $μ_λ$ is any holomorphic family of Beltrami differentials parametrised by an open set Λ of some \mathbb{C}^n then the map $Φ: λ → Γ_{μ_λ}$ is a diffeomorphism restricted to the subset of Λ on which the derivative of Φ has maximal rank.
- Hence

$$dim\Phi(\Lambda))\geq dim(\Lambda).$$

- ▶ The dimension of Λ can be taken arbitrarily large and the (complex) dimension of $\Phi(\Lambda)$ is bounded by three times the number of generators of Γ.
- ▶ This gives a contradiction, completing the proof that the action of Γ on L_{Γ} is recurrent. There is no dissipative part.

The strategy for showing that there is no nontrivial measurable invariant line field on L_{Γ} is by contradiction. So assume that there is a nontrivial measurable invariant line field on L_{Γ} .

The strategy for showing that there is no nontrivial measurable invariant line field on L_{Γ} is by contradiction. So assume that there is a nontrivial measurable invariant line field on L_{Γ} .

By Egoroff's Theorem, there is a compact set K of strictly positive Lebesgue measure restricted to which the line field is continuous.

The strategy for showing that there is no nontrivial measurable invariant line field on L_{Γ} is by contradiction. So assume that there is a nontrivial measurable invariant line field on L_{Γ} .

- By Egoroff's Theorem, there is a compact set K of strictly positive Lebesgue measure restricted to which the line field is continuous.
- ▶ By compactness, the line field is uniformly continuous restricted to K. So given $\varepsilon > 0$ there is $\delta > 0$ such that the direction of the line field varies by at most ε on the intersection of K with any ball of radius δ .

The strategy for showing that there is no nontrivial measurable invariant line field on L_{Γ} is by contradiction. So assume that there is a nontrivial measurable invariant line field on L_{Γ} .

- By Egoroff's Theorem, there is a compact set K of strictly positive Lebesgue measure restricted to which the line field is continuous.
- ▶ By compactness, the line field is uniformly continuous restricted to K. So given $\varepsilon > 0$ there is $\delta > 0$ such that the direction of the line field varies by at most ε on the intersection of K with any ball of radius δ .
- ▶ By a basic result in geometric measure theory, almost every point z of K is a Lebesgue density point of K, that is,

$$\lim_{r\to 0}\frac{\operatorname{meas}(K\cap B_r(z))}{\operatorname{meas}B_r(z))}=1.$$

The strategy for showing that there is no nontrivial measurable invariant line field on L_{Γ} is by contradiction. So assume that there is a nontrivial measurable invariant line field on L_{Γ} .

- By Egoroff's Theorem, there is a compact set K of strictly positive Lebesgue measure restricted to which the line field is continuous.
- ▶ By compactness, the line field is uniformly continuous restricted to K. So given $\varepsilon > 0$ there is $\delta > 0$ such that the direction of the line field varies by at most ε on the intersection of K with any ball of radius δ .
- ▶ By a basic result in geometric measure theory, almost every point z of K is a Lebesgue density point of K, that is,

$$\lim_{r\to 0}\frac{\operatorname{meas}(K\cap B_r(z))}{\operatorname{meas}B_r(z))}=1.$$

Let K_1 be the set of points in K where the density in $B_{r'}(z)$ is at least $1 - \varepsilon_0$ for all $r' \le r$, choosing r so that K_1 has positive measure.

▶ By recurrence, for a.e. $z \in K_1$, $\gamma.z \in K_1$ for infinitely many γ .

- ▶ By recurrence, for a.e. $z \in K_1$, $\gamma.z \in K_1$ for infinitely many γ .
- ► The aim is to show that the line field cannot vary in direction by $< \varepsilon$ on both $B_{\delta}(z)$ and $B_{\delta}(\gamma.z)$.

- ▶ By recurrence, for a.e. $z \in K_1$, $\gamma.z \in K_1$ for infinitely many γ .
- ► The aim is to show that the line field cannot vary in direction by $< \varepsilon$ on both $B_{\delta}(z)$ and $B_{\delta}(\gamma.z)$.
- Use the compact-abelian-compact decomposition

$$\gamma = \pm P \Delta Q$$

where

$$\Delta = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$$

with $0 < \lambda < 1$.

▶ Then for a constant C, either $|\gamma.z - P.0| < C\lambda$ or $|z - Q^{-1}.\infty| < C\lambda$.

- ▶ Then for a constant C, either $|\gamma.z P.0| < C\lambda$ or $|z Q^{-1}.\infty| < C\lambda$.
- ▶ We can assume λ small enough that $2C\lambda < r$.

- ▶ Then for a constant C, either $|\gamma.z P.0| < C\lambda$ or $|z Q^{-1}.\infty| < C\lambda$.
- ▶ We can assume λ small enough that $2C\lambda < r$.
- ▶ In the first case consider the image under γ^{-1} of

$$\{z': |z'-\gamma.z| < C\lambda\}$$

- ▶ Then for a constant C, either $|\gamma.z P.0| < C\lambda$ or $|z Q^{-1}.\infty| < C\lambda$.
- ▶ We can assume λ small enough that $2C\lambda < r$.
- ▶ In the first case consider the image under γ^{-1} of

$$\{z': |z'-\gamma.z| < C\lambda\}$$

▶ If the line field is within ε on proportion $\geq 1 - \varepsilon_0$ of $B_{C\lambda}(\gamma.z)$ then it cannot be so for $B_{C\lambda}(z)$.

- ▶ Then for a constant C, either $|\gamma.z P.0| < C\lambda$ or $|z Q^{-1}.\infty| < C\lambda$.
- ▶ We can assume λ small enough that $2C\lambda < r$.
- ▶ In the first case consider the image under γ^{-1} of

$$\{z': |z'-\gamma.z| < C\lambda\}$$

- ▶ If the line field is within ε on proportion $\geq 1 \varepsilon_0$ of $B_{C\lambda}(\gamma.z)$ then it cannot be so for $B_{C\lambda}(z)$.
- The other case is similar.