Basic dynamics for Kleinian groups

Mary Rees

University of Liverpool
January 2008

Limit set
«ロ〉4司〉4三>4 三

Limit set

The definition of limit set of a Kleinian group which is usually given, uses the action on H^{3}. The definitions given in the previous lecture avoided this.

Limit set

The definition of limit set of a Kleinian group which is usually given, uses the action on H^{3}. The definitions given in the previous lecture avoided this.
Definition The limit set L_{Γ} of a Kleinian group Γ is the set of all accumulation points of $\Gamma . w$ for any $w \in H^{3}$.

Limit set

The definition of limit set of a Kleinian group which is usually given, uses the action on H^{3}. The definitions given in the previous lecture avoided this.
Definition The limit set L_{Γ} of a Kleinian group Γ is the set of all accumulation points of $\Gamma . w$ for any $w \in H^{3}$. Since Γ acts discretely on H^{3}, the limit set is a closed subset of $\overline{\mathbb{C}}$.

Independence from w.

Independence from w.

Lemma 1 The limit set is independent of the choice of $w \in H^{3}$.

Independence from w.

Lemma 1 The limit set is independent of the choice of $w \in H^{3}$. Proof The action of Γ preserves the metric

$$
\frac{d x^{2}+d y^{2}+d t^{2}}{t^{2}}
$$

Independence from w.

Lemma 1 The limit set is independent of the choice of $w \in H^{3}$. Proof The action of Γ preserves the metric

$$
\frac{d x^{2}+d y^{2}+d t^{2}}{t^{2}}
$$

Let d denote the corresponding metric on H^{3}. If w_{1}, w_{2} are two points in H^{3} then $d\left(\gamma \cdot w_{1}, \gamma \cdot w_{2}\right)=d\left(w_{1}, w_{2}\right)$ for all $\gamma \in \Gamma$.

Independence from w.

Lemma 1 The limit set is independent of the choice of $w \in H^{3}$. Proof The action of Γ preserves the metric

$$
\frac{d x^{2}+d y^{2}+d t^{2}}{t^{2}}
$$

Let d denote the corresponding metric on H^{3}. If w_{1}, w_{2} are two points in H^{3} then $d\left(\gamma . w_{1}, \gamma \cdot w_{2}\right)=d\left(w_{1}, w_{2}\right)$ for all $\gamma \in \Gamma$. Suppose that $\lim _{n \rightarrow \infty} \gamma_{n} . w_{1}=z \in \mathbb{C}$. Writing $\gamma_{n} . w_{1}=z_{n}+j t_{n}$ with $z_{n} \in \mathbb{C}$, we have $z_{n} \rightarrow z$ and $t_{n} \rightarrow 0$. So the Euclidean distance between $\gamma_{n} . w_{1}$ and $\gamma_{n} . w_{2} \rightarrow 0$ as $n \rightarrow \infty$ and

$$
\lim _{n \rightarrow \infty} \gamma_{n} \cdot w_{1}=\lim _{n \rightarrow \infty} \gamma_{n} \cdot w_{2}=z
$$

Independence from w.

Lemma 1 The limit set is independent of the choice of $w \in H^{3}$. Proof The action of Γ preserves the metric

$$
\frac{d x^{2}+d y^{2}+d t^{2}}{t^{2}}
$$

Let d denote the corresponding metric on H^{3}. If w_{1}, w_{2} are two points in H^{3} then $d\left(\gamma . w_{1}, \gamma \cdot w_{2}\right)=d\left(w_{1}, w_{2}\right)$ for all $\gamma \in \Gamma$. Suppose that $\lim _{n \rightarrow \infty} \gamma_{n} . w_{1}=z \in \mathbb{C}$. Writing $\gamma_{n} . w_{1}=z_{n}+j t_{n}$ with $z_{n} \in \mathbb{C}$, we have $z_{n} \rightarrow z$ and $t_{n} \rightarrow 0$. So the Euclidean distance between $\gamma_{n} . w_{1}$ and $\gamma_{n} . w_{2} \rightarrow 0$ as $n \rightarrow \infty$ and

$$
\lim _{n \rightarrow \infty} \gamma_{n} \cdot w_{1}=\lim _{n \rightarrow \infty} \gamma_{n} \cdot w_{2}=z
$$

Compact-abelian-compact decomposition

Compact-abelian-compact decomposition

For $A \in S L(2, \mathbb{C}), A^{*} A$ is has strictly positive eigenvalues with product 1. So we have

$$
A^{*} A=Q^{*} \Delta^{2} Q
$$

where $Q \in S U(2, \mathbb{C})$ and

$$
\Delta=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right)
$$

Compact-abelian-compact decomposition

For $A \in S L(2, \mathbb{C}), A^{*} A$ is has strictly positive eigenvalues with product 1. So we have

$$
A^{*} A=Q^{*} \Delta^{2} Q
$$

where $Q \in S U(2, \mathbb{C})$ and

$$
\Delta=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right) .
$$

By choice of Q, we can assume $0<\lambda<1$, unless
$A \in S U(2, \mathbb{C})$ and $A^{*} A$ is the identity in which case $\lambda=1$. Then

$$
\sqrt{A^{*} A}=Q^{*} \Delta Q,
$$

and, for any $\underline{v} \in \mathbb{C}^{2}$,

$$
\left\|\sqrt{A^{*} A} \underline{v}\right\|^{2}=<A^{*} A \underline{v}, \underline{v}>=\|A \underline{v}\|^{2} .
$$

Compact-abelian-compact decomposition

For $A \in S L(2, \mathbb{C}), A^{*} A$ is has strictly positive eigenvalues with product 1. So we have

$$
A^{*} A=Q^{*} \Delta^{2} Q
$$

where $Q \in S U(2, \mathbb{C})$ and

$$
\Delta=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right) .
$$

By choice of Q, we can assume $0<\lambda<1$, unless
$A \in S U(2, \mathbb{C})$ and $A^{*} A$ is the identity in which case $\lambda=1$. Then

$$
\sqrt{A^{*} A}=Q^{*} \Delta Q,
$$

and, for any $\underline{v} \in \mathbb{C}^{2}$,

$$
\left\|\sqrt{A^{*} A \underline{v}}\right\|^{2}=<A^{*} A \underline{v}, \underline{v}>=\|A \underline{v}\|^{2} .
$$

Hence, for some $P \in S U(2, \mathbb{C})$,

$$
A=P Q \sqrt{A^{*} A}=P \Delta Q .
$$

This is known as the compact-abelian-compact decomposition (of $A \in S L(2, \mathbb{C})$) and is an instance of a decomposition which works for any semisimple Lie group.

Implication for limit set accumulation sequences

Implication for limit set accumulation sequences

Suppose that A_{n} is a sequence of matrices in a Kleinian group Γ such that $A_{n} . j$ converges to $z_{0} \in \overline{\mathbb{C}}$ and

$$
A_{n}=P_{n} \Delta_{n} Q_{n}
$$

with P_{n} and $Q_{n} \in S U(2, \mathbb{C})$ and, for $0<\lambda_{n}<1$,

$$
\Delta_{n}=\left(\begin{array}{cc}
\lambda_{n} & 0 \\
0 & \lambda_{n}^{-1}
\end{array}\right)
$$

Implication for limit set accumulation sequences

Suppose that A_{n} is a sequence of matrices in a Kleinian group Γ such that $A_{n} . j$ converges to $z_{0} \in \overline{\mathbb{C}}$ and

$$
A_{n}=P_{n} \Delta_{n} Q_{n}
$$

with P_{n} and $Q_{n} \in S U(2, \mathbb{C})$ and, for $0<\lambda_{n}<1$,

$$
\Delta_{n}=\left(\begin{array}{cc}
\lambda_{n} & 0 \\
0 & \lambda_{n}^{-1}
\end{array}\right)
$$

Then, since $S U(2, \mathbb{C})$ is compact, we can assume after taking a subsequence of $\left\{A_{n}\right\}$, that $P_{n} \rightarrow P \in S U(2, \mathbb{C})$ and $Q_{n} \rightarrow Q \in S U(2, \mathbb{C})$.

Implication for limit set accumulation sequences

Suppose that A_{n} is a sequence of matrices in a Kleinian group Γ such that $A_{n} . j$ converges to $z_{0} \in \overline{\mathbb{C}}$ and

$$
A_{n}=P_{n} \Delta_{n} Q_{n}
$$

with P_{n} and $Q_{n} \in S U(2, \mathbb{C})$ and, for $0<\lambda_{n}<1$,

$$
\Delta_{n}=\left(\begin{array}{cc}
\lambda_{n} & 0 \\
0 & \lambda_{n}^{-1}
\end{array}\right)
$$

Then, since $S U(2, \mathbb{C})$ is compact, we can assume after taking a subsequence of $\left\{A_{n}\right\}$, that $P_{n} \rightarrow P \in S U(2, \mathbb{C})$ and $Q_{n} \rightarrow Q \in \operatorname{SU}(2, \mathbb{C})$. Then

$$
\lim _{n \rightarrow \infty}\left(\Delta_{n} Q_{n}\right) \cdot j=0
$$

Implication for limit set accumulation sequences

Suppose that A_{n} is a sequence of matrices in a Kleinian group
Γ such that $A_{n} . j$ converges to $z_{0} \in \overline{\mathbb{C}}$ and

$$
A_{n}=P_{n} \Delta_{n} Q_{n}
$$

with P_{n} and $Q_{n} \in S U(2, \mathbb{C})$ and, for $0<\lambda_{n}<1$,

$$
\Delta_{n}=\left(\begin{array}{cc}
\lambda_{n} & 0 \\
0 & \lambda_{n}^{-1}
\end{array}\right)
$$

Then, since $S U(2, \mathbb{C})$ is compact, we can assume after taking a subsequence of $\left\{A_{n}\right\}$, that $P_{n} \rightarrow P \in S U(2, \mathbb{C})$ and $Q_{n} \rightarrow Q \in S U(2, \mathbb{C})$. Then

$$
\lim _{n \rightarrow \infty}\left(\Delta_{n} Q_{n}\right) \cdot j=0
$$

and so

$$
\lim _{n \rightarrow \infty} A_{n} \cdot j=P .0
$$

Implication for limit set accumulation sequences

Suppose that A_{n} is a sequence of matrices in a Kleinian group
Γ such that $A_{n} . j$ converges to $z_{0} \in \overline{\mathbb{C}}$ and

$$
A_{n}=P_{n} \Delta_{n} Q_{n}
$$

with P_{n} and $Q_{n} \in S U(2, \mathbb{C})$ and, for $0<\lambda_{n}<1$,

$$
\Delta_{n}=\left(\begin{array}{cc}
\lambda_{n} & 0 \\
0 & \lambda_{n}^{-1}
\end{array}\right)
$$

Then, since $S U(2, \mathbb{C})$ is compact, we can assume after taking a subsequence of $\left\{A_{n}\right\}$, that $P_{n} \rightarrow P \in S U(2, \mathbb{C})$ and $Q_{n} \rightarrow Q \in \operatorname{SU}(2, \mathbb{C})$. Then

$$
\lim _{n \rightarrow \infty}\left(\Delta_{n} Q_{n}\right) \cdot j=0
$$

and so

$$
\lim _{n \rightarrow \infty} A_{n} \cdot j=P .0
$$

Also, if $z \in \overline{\mathbb{C}}$ and $Q . z \neq \infty$ then

$$
\lim _{n \rightarrow \infty} A_{n} . z=P .0
$$

Similarly,

$$
\lim _{n \rightarrow \infty} A_{n}^{-1} \cdot j=Q^{-1} \cdot \infty,
$$

Similarly,

$$
\lim _{n \rightarrow \infty} A_{n}^{-1} \cdot j=Q^{-1} \cdot \infty
$$

and if $P^{-1} . z \neq 0$,

$$
\lim _{n \rightarrow \infty} A_{n}^{-1} \cdot z=Q^{-1} \cdot \infty
$$

Similarly,

$$
\lim _{n \rightarrow \infty} A_{n}^{-1} \cdot j=Q^{-1} \cdot \infty
$$

and if $P^{-1} . z \neq 0$,

$$
\lim _{n \rightarrow \infty} A_{n}^{-1} \cdot z=Q^{-1} \cdot \infty
$$

We can use this to prove the following:

Similarly,

$$
\lim _{n \rightarrow \infty} A_{n}^{-1} \cdot j=Q^{-1} \cdot \infty
$$

and if $P^{-1} . z \neq 0$,

$$
\lim _{n \rightarrow \infty} A_{n}^{-1} \cdot z=Q^{-1} \cdot \infty
$$

We can use this to prove the following:
Lemma 2 Suppose that Γ is non-elementary. For any $z_{0} \in L_{\Gamma}$,

$$
\overline{\Gamma . z_{0}}=L_{\Gamma} .
$$

Similarly,

$$
\lim _{n \rightarrow \infty} A_{n}^{-1} \cdot j=Q^{-1} . \infty
$$

and if $P^{-1} . z \neq 0$,

$$
\lim _{n \rightarrow \infty} A_{n}^{-1} \cdot z=Q^{-1} \cdot \infty
$$

We can use this to prove the following:
Lemma 2 Suppose that Γ is non-elementary. For any $z_{0} \in L_{\Gamma}$,

$$
\overline{\Gamma . z_{0}}=L_{\Gamma} .
$$

Proof Take any $z \in L_{\Gamma}$ and sequence $\left\{A_{n}\right\} \subset \Gamma$ with $A_{n} . j \rightarrow z$. Write $A_{n}=P_{n} \Delta_{n} Q_{n}$ as before and assume $P_{n} \rightarrow P$ and $Q_{n} \rightarrow Q$.

Similarly,

$$
\lim _{n \rightarrow \infty} A_{n}^{-1} \cdot j=Q^{-1} . \infty
$$

and if $P^{-1} . z \neq 0$,

$$
\lim _{n \rightarrow \infty} A_{n}^{-1} \cdot z=Q^{-1} \cdot \infty
$$

We can use this to prove the following:
Lemma 2 Suppose that Γ is non-elementary. For any $z_{0} \in L_{\Gamma}$,

$$
\overline{\Gamma . z_{0}}=L_{\Gamma} .
$$

Proof Take any $z \in L_{\Gamma}$ and sequence $\left\{A_{n}\right\} \subset \Gamma$ with $A_{n} . j \rightarrow z$. Write $A_{n}=P_{n} \Delta_{n} Q_{n}$ as before and assume $P_{n} \rightarrow P$ and $Q_{n} \rightarrow Q$.

- If $z_{0} \neq Q^{-1} . \infty$ then $A_{n} \rightarrow z_{0} \rightarrow P .0=z$.

Similarly,

$$
\lim _{n \rightarrow \infty} A_{n}^{-1} \cdot j=Q^{-1} \cdot \infty
$$

and if $P^{-1} . z \neq 0$,

$$
\lim _{n \rightarrow \infty} A_{n}^{-1} \cdot z=Q^{-1} \cdot \infty
$$

We can use this to prove the following:
Lemma 2 Suppose that Γ is non-elementary. For any $z_{0} \in L_{\Gamma}$,

$$
\overline{\Gamma . z_{0}}=L_{\Gamma} .
$$

Proof Take any $z \in L_{\Gamma}$ and sequence $\left\{A_{n}\right\} \subset \Gamma$ with $A_{n} . j \rightarrow z$. Write $A_{n}=P_{n} \Delta_{n} Q_{n}$ as before and assume $P_{n} \rightarrow P$ and $Q_{n} \rightarrow Q$.

- If $z_{0} \neq Q^{-1} . \infty$ then $A_{n} \rightarrow z_{0} \rightarrow P .0=z$.
- If $z_{0}=Q^{-1} . \infty$ then choose $B \in \Gamma$ such that $B . z_{0} \neq z_{0}$. then $\left(A_{n} B\right) . j=A_{n} . B . j \rightarrow z$ by Lemma 1. So
$\left(A_{n} B\right) \cdot z_{0}=A_{n} \cdot\left(B \cdot z_{0}\right) \rightarrow z$.

The complement of the limit set

The complement of the limit set

The following lemma shows that the complement Ω_{Γ} of L_{Γ} has a property claimed in the last lecture.

The complement of the limit set

The following lemma shows that the complement Ω_{Γ} of L_{Γ} has a property claimed in the last lecture.
Lemma 3 If $z \notin L_{\Gamma}$ then there exists an open neighbourhood U of z such that $A . U \cap U \neq \emptyset$ for $A \in \Gamma$ only if $A . z=z$ - in which case A must be elliptic.

Proof

Proof

- Certainly if z is fixed by A and A is parabolic or hyperbolic then $z \in L_{\Gamma}$, because if A is parabolic then $A^{n} . j \rightarrow z$ as $n \rightarrow \pm \infty$ and if A is hyperbolic then $A^{n} . j \rightarrow z$ either as $n \rightarrow+\infty$ or as $n \rightarrow-\infty$, depending on whether z is an attracting or repelling fixed point of A.

Proof

- Certainly if z is fixed by A and A is parabolic or hyperbolic then $z \in L_{\Gamma}$, because if A is parabolic then $A^{n} . j \rightarrow z$ as $n \rightarrow \pm \infty$ and if A is hyperbolic then $A^{n} . j \rightarrow z$ either as $n \rightarrow+\infty$ or as $n \rightarrow-\infty$, depending on whether z is an attracting or repelling fixed point of A.
- So now suppose that there are sequences $\left\{A_{n}\right\} \subset \Gamma$ and $\left\{z_{n}\right\} \subset \overline{\mathbb{C}}$ such that $z_{n} \rightarrow z$ and $A_{n} \cdot z_{n} \rightarrow z$ and all A_{n} distinct.

Proof

- Certainly if z is fixed by A and A is parabolic or hyperbolic then $z \in L_{\Gamma}$, because if A is parabolic then $A^{n} . j \rightarrow z$ as $n \rightarrow \pm \infty$ and if A is hyperbolic then $A^{n} . j \rightarrow z$ either as $n \rightarrow+\infty$ or as $n \rightarrow-\infty$, depending on whether z is an attracting or repelling fixed point of A.
- So now suppose that there are sequences $\left\{A_{n}\right\} \subset \Gamma$ and $\left\{z_{n}\right\} \subset \overline{\mathbb{C}}$ such that $z_{n} \rightarrow z$ and $A_{n} \cdot z_{n} \rightarrow z$ and all A_{n} distinct.
- Write $A_{n}=P_{n} \Delta_{n} Q_{n}$ as before and as before assume that $P_{n} \rightarrow P$ and $Q_{n} \rightarrow Q$.

Proof

- Certainly if z is fixed by A and A is parabolic or hyperbolic then $z \in L_{\Gamma}$, because if A is parabolic then $A^{n} . j \rightarrow z$ as $n \rightarrow \pm \infty$ and if A is hyperbolic then $A^{n} . j \rightarrow z$ either as $n \rightarrow+\infty$ or as $n \rightarrow-\infty$, depending on whether z is an attracting or repelling fixed point of A.
- So now suppose that there are sequences $\left\{A_{n}\right\} \subset \Gamma$ and $\left\{z_{n}\right\} \subset \overline{\mathbb{C}}$ such that $z_{n} \rightarrow z$ and $A_{n} \cdot z_{n} \rightarrow z$ and all A_{n} distinct.
- Write $A_{n}=P_{n} \Delta_{n} Q_{n}$ as before and as before assume that $P_{n} \rightarrow P$ and $Q_{n} \rightarrow Q$.
- We have seen that $A_{n} . j \rightarrow P .0$ and $A_{n}^{-1} . j \rightarrow Q^{-1} . \infty$, and $A_{n} . z \rightarrow P .0$ unless $z=Q^{-1} . \infty$. But $z \neq Q^{-1} . \infty$ because $z \notin L_{\Gamma}$.

Proof

- Certainly if z is fixed by A and A is parabolic or hyperbolic then $z \in L_{\Gamma}$, because if A is parabolic then $A^{n} . j \rightarrow z$ as $n \rightarrow \pm \infty$ and if A is hyperbolic then $A^{n} . j \rightarrow z$ either as $n \rightarrow+\infty$ or as $n \rightarrow-\infty$, depending on whether z is an attracting or repelling fixed point of A.
- So now suppose that there are sequences $\left\{A_{n}\right\} \subset \Gamma$ and $\left\{z_{n}\right\} \subset \overline{\mathbb{C}}$ such that $z_{n} \rightarrow z$ and $A_{n} \cdot z_{n} \rightarrow z$ and all A_{n} distinct.
- Write $A_{n}=P_{n} \Delta_{n} Q_{n}$ as before and as before assume that $P_{n} \rightarrow P$ and $Q_{n} \rightarrow Q$.
- We have seen that $A_{n} . j \rightarrow P .0$ and $A_{n}^{-1} . j \rightarrow Q^{-1} . \infty$, and $A_{n} . z \rightarrow P .0$ unless $z=Q^{-1} . \infty$. But $z \neq Q^{-1} . \infty$ because $z \notin L_{r}$.
- In fact $A_{n} . z^{\prime} \rightarrow P .0$ uniformly on some neighbourhood of z if $z \neq Q^{-1} . \infty$ (which is true). So $A_{n} . z_{n} \rightarrow P .0$. But then $z=P .0 \in L_{\Gamma}$, giving a contradiction.

Density of attractive (or repelling) fixed points

Density of attractive (or repelling) fixed points

The following lemma shows that another property of the limit set claimed in the last lecture is true.

Density of attractive (or repelling) fixed points

The following lemma shows that another property of the limit set claimed in the last lecture is true. Lemma 4 If Γ is nonelementary then attractive fixed points of elements of Γ are dense in L_{Γ}.

Density of attractive (or repelling) fixed points

The following lemma shows that another property of the limit set claimed in the last lecture is true. Lemma 4 If Γ is nonelementary then attractive fixed points of elements of Γ are dense in L_{Γ}. Proof

- Let $z \in L_{\Gamma}$ and let $\left\{A_{n}\right\} \subset \Gamma$ with $A_{n} \cdot j \rightarrow z$.

Density of attractive (or repelling) fixed points

The following lemma shows that another property of the limit set claimed in the last lecture is true.
Lemma 4 If Γ is nonelementary then attractive fixed points of elements of Γ are dense in L_{Γ}.
Proof

- Let $z \in L_{\Gamma}$ and let $\left\{A_{n}\right\} \subset \Gamma$ with $A_{n} \cdot j \rightarrow z$.
- As before write $A_{n}=P_{n} \Delta_{n} Q_{n}$ with $P_{n} \rightarrow P$ and $Q_{n} \rightarrow Q$, so that $z=P .0$. Choose any $B \in \Gamma$ such that $B . z \neq Q^{-1} . \infty$.

Density of attractive (or repelling) fixed points

The following lemma shows that another property of the limit set claimed in the last lecture is true.
Lemma 4 If Γ is nonelementary then attractive fixed points of elements of Γ are dense in L_{Γ}.
Proof

- Let $z \in L_{\Gamma}$ and let $\left\{A_{n}\right\} \subset \Gamma$ with $A_{n} \cdot j \rightarrow z$.
- As before write $A_{n}=P_{n} \Delta_{n} Q_{n}$ with $P_{n} \rightarrow P$ and $Q_{n} \rightarrow Q$, so that $z=P .0$. Choose any $B \in \Gamma$ such that $B . z \neq Q^{-1} . \infty$.
- Then, as in Lemma 2, $A_{n} B \cdot z^{\prime} \rightarrow z$ uniformly for z^{\prime} in some open neighbourhood U of z.

Density of attractive (or repelling) fixed points

The following lemma shows that another property of the limit set claimed in the last lecture is true.
Lemma 4 If Γ is nonelementary then attractive fixed points of elements of Γ are dense in L_{Γ}.
Proof

- Let $z \in L_{\Gamma}$ and let $\left\{A_{n}\right\} \subset \Gamma$ with $A_{n} \cdot j \rightarrow z$.
- As before write $A_{n}=P_{n} \Delta_{n} Q_{n}$ with $P_{n} \rightarrow P$ and $Q_{n} \rightarrow Q$, so that $z=P .0$. Choose any $B \in \Gamma$ such that B. $z \neq Q^{-1} . \infty$.
- Then, as in Lemma 2, $A_{n} B . z^{\prime} \rightarrow z$ uniformly for z^{\prime} in some open neighbourhood U of z.
- Then for all sufficiently large $n, A_{n} B(\bar{U}) \subset U$. But then $A_{n} B$ must be hyperbolic with attractive fixed point in U.

Density of attractive (or repelling) fixed points

The following lemma shows that another property of the limit set claimed in the last lecture is true.
Lemma 4 If Γ is nonelementary then attractive fixed points of elements of Γ are dense in L_{Γ}.
Proof

- Let $z \in L_{\Gamma}$ and let $\left\{A_{n}\right\} \subset \Gamma$ with $A_{n} \cdot j \rightarrow z$.
- As before write $A_{n}=P_{n} \Delta_{n} Q_{n}$ with $P_{n} \rightarrow P$ and $Q_{n} \rightarrow Q$, so that $z=P .0$. Choose any $B \in \Gamma$ such that B. $z \neq Q^{-1} . \infty$.
- Then, as in Lemma 2, $A_{n} B . z^{\prime} \rightarrow z$ uniformly for z^{\prime} in some open neighbourhood U of z.
- Then for all sufficiently large $n, A_{n} B(\bar{U}) \subset U$. But then $A_{n} B$ must be hyperbolic with attractive fixed point in U.
- Since U can be taken arbitrarily small, z is approximated arbitrarily closely by attractive fixed points of hyperbolic elements.

Density of axes

Density of axes

This result has no natural analogue for holomorphic maps but is important in the study of geodesic flows.

Density of axes

This result has no natural analogue for holomorphic maps but is important in the study of geodesic flows.
Lemma 5 Let Γ be nonelementary,. Then the set of pairs consisting of attractive and repelling endpoints of hyperbolic elements of Γ is dense in $L_{\Gamma} \times L_{\Gamma}$.

Density of axes

This result has no natural analogue for holomorphic maps but is important in the study of geodesic flows.
Lemma 5 Let Γ be nonelementary,. Then the set of pairs consisting of attractive and repelling endpoints of hyperbolic elements of Γ is dense in $L_{\Gamma} \times L_{\Gamma}$.
Proof

Density of axes

This result has no natural analogue for holomorphic maps but is important in the study of geodesic flows.
Lemma 5 Let Γ be nonelementary,. Then the set of pairs consisting of attractive and repelling endpoints of hyperbolic elements of Γ is dense in $L_{\Gamma} \times L_{\Gamma}$. Proof

- Let $\left(z_{1}, z_{2}\right) \in L_{\Gamma} \times L_{\Gamma}$ where z_{1} is an attractive fixed point of A_{1} and z_{2} is a repelling fixed point of A_{2} and $z_{1} \neq z_{2}$.

Density of axes

This result has no natural analogue for holomorphic maps but is important in the study of geodesic flows.
Lemma 5 Let Γ be nonelementary,. Then the set of pairs consisting of attractive and repelling endpoints of hyperbolic elements of Γ is dense in $L_{\Gamma} \times L_{\Gamma}$. Proof

- Let $\left(z_{1}, z_{2}\right) \in L_{\Gamma} \times L_{\Gamma}$ where z_{1} is an attractive fixed point of A_{1} and z_{2} is a repelling fixed point of A_{2} and $z_{1} \neq z_{2}$.
- Let z_{3} and z_{4} be the repelling and attractive fixed points of A_{1} and A_{2} respectively. Assume also that $z_{4} \neq z_{3}$.
- Fix disjoint open neighbourhoods U_{j} of z_{j} with

$$
A_{1}\left(\overline{U_{1}}\right) \subset U_{1}, A_{1}^{-1}\left(\overline{U_{3}}\right) \subset U_{3}
$$

- Fix disjoint open neighbourhoods U_{j} of z_{j} with

$$
\begin{aligned}
& A_{1}\left(\overline{U_{1}}\right) \subset U_{1}, A_{1}^{-1}\left(\overline{U_{3}}\right) \subset U_{3} \\
& A_{2}^{-1}\left(\overline{U_{2}}\right) \subset U_{2}, A_{2}\left(\overline{U_{4}}\right) \subset U_{4}
\end{aligned}
$$

- Fix disjoint open neighbourhoods U_{j} of z_{j} with

$$
\begin{aligned}
& A_{1}\left(\overline{U_{1}}\right) \subset U_{1}, A_{1}^{-1}\left(\overline{U_{3}}\right) \subset U_{3} \\
& A_{2}^{-1}\left(\overline{U_{2}}\right) \subset U_{2}, A_{2}\left(\overline{U_{4}}\right) \subset U_{4}
\end{aligned}
$$

- Then for all sufficiently large n and m,

$$
A_{2}^{n} \cdot\left(\overline{U_{1}}\right) \subset U_{4}
$$

- Fix disjoint open neighbourhoods U_{j} of z_{j} with

$$
\begin{aligned}
& A_{1}\left(\overline{U_{1}}\right) \subset U_{1}, A_{1}^{-1}\left(\overline{U_{3}}\right) \subset U_{3} \\
& A_{2}^{-1}\left(\overline{U_{2}}\right) \subset U_{2}, A_{2}\left(\overline{U_{4}}\right) \subset U_{4}
\end{aligned}
$$

- Then for all sufficiently large n and m,

$$
A_{2}^{n} \cdot\left(\overline{U_{1}}\right) \subset U_{4}
$$

and

$$
A_{1}^{m}\left(\overline{U_{4}}\right) \subset U_{1} .
$$

- Fix disjoint open neighbourhoods U_{j} of z_{j} with

$$
\begin{aligned}
& A_{1}\left(\overline{U_{1}}\right) \subset U_{1}, A_{1}^{-1}\left(\overline{U_{3}}\right) \subset U_{3} \\
& A_{2}^{-1}\left(\overline{U_{2}}\right) \subset U_{2}, A_{2}\left(\overline{U_{4}}\right) \subset U_{4}
\end{aligned}
$$

- Then for all sufficiently large n and m,

$$
A_{2}^{n} \cdot\left(\overline{U_{1}}\right) \subset U_{4}
$$

and

$$
A_{1}^{m}\left(\overline{U_{4}}\right) \subset U_{1} .
$$

- So for all sufficiently large n and m

$$
A_{1}^{m} A_{2}^{n}\left(\overline{U_{1}}\right) \subset U_{1} .
$$

- Fix disjoint open neighbourhoods U_{j} of z_{j} with

$$
\begin{aligned}
& A_{1}\left(\overline{U_{1}}\right) \subset U_{1}, A_{1}^{-1}\left(\overline{U_{3}}\right) \subset U_{3} \\
& A_{2}^{-1}\left(\overline{U_{2}}\right) \subset U_{2}, A_{2}\left(\overline{U_{4}}\right) \subset U_{4}
\end{aligned}
$$

- Then for all sufficiently large n and m,

$$
A_{2}^{n} \cdot\left(\overline{U_{1}}\right) \subset U_{4}
$$

and

$$
A_{1}^{m}\left(\overline{U_{4}}\right) \subset U_{1} .
$$

- So for all sufficiently large n and m

$$
A_{1}^{m} A_{2}^{n}\left(\overline{U_{1}}\right) \subset U_{1} .
$$

and similarly

$$
A_{2}^{-n} A_{1}^{-m}\left(\overline{U_{2}}\right) \subset U_{2}
$$

- Fix disjoint open neighbourhoods U_{j} of z_{j} with

$$
\begin{aligned}
& A_{1}\left(\overline{U_{1}}\right) \subset U_{1}, A_{1}^{-1}\left(\overline{U_{3}}\right) \subset U_{3} \\
& A_{2}^{-1}\left(\overline{U_{2}}\right) \subset U_{2}, A_{2}\left(\overline{U_{4}}\right) \subset U_{4}
\end{aligned}
$$

- Then for all sufficiently large n and m,

$$
A_{2}^{n} \cdot\left(\overline{U_{1}}\right) \subset U_{4}
$$

and

$$
A_{1}^{m}\left(\overline{U_{4}}\right) \subset U_{1} .
$$

- So for all sufficiently large n and m

$$
A_{1}^{m} A_{2}^{n}\left(\overline{U_{1}}\right) \subset U_{1} .
$$

and similarly

$$
A_{2}^{-n} A_{1}^{-m}\left(\overline{U_{2}}\right) \subset U_{2}
$$

- It follows that U_{1} contains the attractive fixed point of $A_{1}^{m} A_{2}^{n}$ and U_{2} contains the repelling fixed point.

Discussion: Equivalence between hyperbolic action and convex cocompact

- There is a covering of L_{Γ} by finitely many open balls U_{i} $(1 \leq i \leq n)$ such that, for each $\varepsilon>0$, there is a covering of L_{Γ} by sets of the form $\gamma . U_{i}$ with $\gamma \in \Gamma$ and of radius $<\varepsilon$ in the spherical metric.

Discussion: Equivalence between hyperbolic action and convex cocompact

- There is a covering of L_{Γ} by finitely many open balls U_{i} $(1 \leq i \leq n)$ such that, for each $\varepsilon>0$, there is a covering of L_{Γ} by sets of the form $\gamma . U_{i}$ with $\gamma \in \Gamma$ and of radius $<\varepsilon$ in the spherical metric.
- $\left(H^{3} \cup \Omega_{\Gamma}\right) / \Gamma$ is compact.

Discussion: Equivalence between hyperbolic action and convex cocompact

- There is a covering of L_{Γ} by finitely many open balls U_{i} $(1 \leq i \leq n)$ such that, for each $\varepsilon>0$, there is a covering of L_{Γ} by sets of the form $\gamma . U_{i}$ with $\gamma \in \Gamma$ and of radius $<\varepsilon$ in the spherical metric.
- $\left(H^{3} \cup \Omega_{\Gamma}\right) / \Gamma$ is compact.

