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Limit set

The definition of limit set of a Kleinian group which is usually
given, uses the action on H3. The definitions given in the
previous lecture avoided this.
Definition The limit set LΓ of a Kleinian group Γ is the set of all
accumulation points of Γ.w for any w ∈ H3.
Since Γ acts discretely on H3, the limit set is a closed subset of
C.
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Independence from w .

Lemma 1 The limit set is independent of the choice of w ∈ H3.
Proof The action of Γ preserves the metric

dx2 + dy2 + dt2

t2 .

Let d denote the corresponding metric on H3. If w1, w2 are two
points in H3 then d(γ.w1, γ.w2) = d(w1,w2) for all γ ∈ Γ.
Suppose that limn→∞ γn.w1 = z ∈ C. Writing γn.w1 = zn + jtn
with zn ∈ C, we have zn → z and tn → 0. So the Euclidean
distance between γn.w1 and γn.w2 → 0 as n→∞ and

lim
n→∞

γn.w1 = lim
n→∞

γn.w2 = z.
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Compact-abelian-compact decomposition

For A ∈ SL(2,C), A∗A is has strictly positive eigenvalues with
product 1. So we have

A∗A = Q∗∆2Q

where Q ∈ SU(2,C) and

∆ =

(
λ 0
0 λ−1

)
.

By choice of Q, we can assume 0 < λ < 1, unless
A ∈ SU(2,C) and A∗A is the identity in which case λ = 1. Then

√
A∗A = Q∗∆Q,

and, for any v ∈ C2,

‖
√

A∗Av‖2 =< A∗Av , v >= ‖Av‖2.

Hence, for some P ∈ SU(2,C),

A = PQ
√

A∗A = P∆Q.
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This is known as the compact-abelian-compact decomposition
(of A ∈ SL(2,C)) and is an instance of a decomposition which
works for any semisimple Lie group.



Implication for limit set accumulation sequences

Suppose that An is a sequence of matrices in a Kleinian group
Γ such that An.j converges to z0 ∈ C and

An = Pn∆nQn

with Pn and Qn ∈ SU(2,C) and, for 0 < λn < 1,

∆n =

(
λn 0
0 λ−1

n

)
Then, since SU(2,C) is compact, we can assume after taking a
subsequence of {An}, that Pn → P ∈ SU(2,C) and
Qn → Q ∈ SU(2,C). Then

lim
n→∞

(∆nQn).j = 0,

and so
lim

n→∞
An.j = P.0.

Also, if z ∈ C and Q.z 6=∞ then

lim
n→∞

An.z = P.0.
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Similarly,
lim

n→∞
A−1

n .j = Q−1.∞,

and if P−1.z 6= 0,

lim
n→∞

A−1
n .z = Q−1.∞.

We can use this to prove the following:
Lemma 2 Suppose that Γ is non-elementary. For any z0 ∈ LΓ,

Γ.z0 = LΓ.

Proof Take any z ∈ LΓ and sequence {An} ⊂ Γ with An.j → z.
Write An = Pn∆nQn as before and assume Pn → P and
Qn → Q.

I If z0 6= Q−1.∞ then An → z0 → P.0 = z.
I If z0 = Q−1.∞ then choose B ∈ Γ such that B.z0 6= z0.

then (AnB).j = An.B.j → z by Lemma 1. So
(AnB).z0 = An.(B.z0)→ z.
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The complement of the limit set

The following lemma shows that the complement ΩΓ of LΓ has a
property claimed in the last lecture.
Lemma 3 If z /∈ LΓ then there exists an open neighbourhood U
of z such that A.U ∩ U 6= ∅ for A ∈ Γ only if A.z = z – in which
case A must be elliptic.
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Proof

I Certainly if z is fixed by A and A is parabolic or hyperbolic
then z ∈ LΓ, because if A is parabolic then An.j → z as
n→ ±∞ and if A is hyperbolic then An.j → z either as
n→ +∞ or as n→ −∞, depending on whether z is an
attracting or repelling fixed point of A.

I So now suppose that there are sequences {An} ⊂ Γ and
{zn} ⊂ C such that zn → z and An.zn → z and all An
distinct.

I Write An = Pn∆nQn as before and as before assume that
Pn → P and Qn → Q.

I We have seen that An.j → P.0 and A−1
n .j → Q−1.∞, and

An.z → P.0 unless z = Q−1.∞. But z 6= Q−1.∞ because
z /∈ LΓ.

I In fact An.z ′ → P.0 uniformly on some neighbourhood of z
if z 6= Q−1.∞ (which is true). So An.zn → P.0. But then
z = P.0 ∈ LΓ, giving a contradiction.
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Density of attractive (or repelling) fixed points

The following lemma shows that another property of the limit
set claimed in the last lecture is true.
Lemma 4 If Γ is nonelementary then attractive fixed points of
elements of Γ are dense in LΓ.
Proof

I Let z ∈ LΓ and let {An} ⊂ Γ with An.j → z.
I As before write An = Pn∆nQn with Pn → P and Qn → Q,

so that z = P.0. Choose any B ∈ Γ such that
B.z 6= Q−1.∞.

I Then, as in Lemma 2, AnB.z ′ → z uniformly for z ′ in some
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I Then for all sufficiently large n, AnB(U) ⊂ U. But then AnB
must be hyperbolic with attractive fixed point in U.

I Since U can be taken arbitrarily small, z is approximated
arbitrarily closely by attractive fixed points of hyperbolic
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Density of axes

This result has no natural analogue for holomorphic maps but is
important in the study of geodesic flows.
Lemma 5 Let Γ be nonelementary,. Then the set of pairs
consisting of attractive and repelling endpoints of hyperbolic
elements of Γ is dense in LΓ × LΓ.
Proof

I Let (z1, z2) ∈ LΓ × LΓ where z1 is an attractive fixed point of
A1 and z2 is a repelling fixed point of A2 and z1 6= z2.

I Let z3 and z4 be the repelling and attractive fixed points of
A1 and A2 respectively. Assume also that z4 6= z3.
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I Fix disjoint open neighbourhoods Uj of zj with

A1(U1) ⊂ U1,A−1
1 (U3) ⊂ U3

A−1
2 (U2) ⊂ U2, A2(U4) ⊂ U4

I Then for all sufficiently large n and m,

An
2.(U1) ⊂ U4

and
Am

1 (U4) ⊂ U1.

I So for all sufficiently large n and m

Am
1 An

2(U1) ⊂ U1.

and similarly
A−n

2 A−m
1 (U2) ⊂ U2.
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I It follows that U1 contains the attractive fixed point of Am
1 An

2
and U2 contains the repelling fixed point.



Discussion: Equivalence between hyperbolic action
and convex cocompact

I There is a covering of LΓ by finitely many open balls Ui
(1 ≤ i ≤ n) such that, for each ε > 0, there is a covering of
LΓ by sets of the form γ.Ui with γ ∈ Γ and of radius < ε in
the spherical metric.

I (H3 ∪ ΩΓ)/Γ is compact.
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