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Modelling of attitude error in vector magnetic data: application to Ørsted data
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Analysis of data from the Ørsted satellite indicates that the largest source of error arises from an anisotropic
attitude uncertainty, related to poorly determined rotation about the axis of the star imager. For two data sets from
May and December 1999, I quantify this error, and review and apply a formalism designed to allow for this problem.
I argue that, when modelled correctly, this attitude uncertainty should not significantly damage the main field models
obtained from Ørsted data.

1. Introduction
In modelling of the geomagnetic field, it is customary to

treat the errors on the data as uncorrelated, although this
is generally far from the case. The full treatment of error
correlations requires the inversion of a data by data matrix,
which is impractical given the quantity of data required for
high quality field modelling (although see Rygaard-Hjalsted
et al. (1997) for the application of sparse matrix techniques
towards this goal). However, one form of error correlation
can be treated easily: when different components of the field
measured at the same place and time are correlated. Such
local correlation can be allowed for easily at no additional
numerical cost, and it has been shown that so doing can lead to
significant improvements in field modelling. Two cases have
been considered in detail thus far: anisotropy in the crustal
field error for main field modelling (Holme and Jackson,
1997), and the effect of attitude uncertainty in spacecraft
magnetometry (Holme and Bloxham, 1995, 1996).

The consideration of these methods has received new ur-
gency from study of data from the Danish magnetic satellite
Ørsted. This satellite was launched on February 23rd, 1999,
and has returned much high quality data. More details of
the mission and the field models which have been produced
from the data can be found elsewhere in this issue. How-
ever, one aspect of the data still requires detailed attention.
Ørsted carries only one star camera, which provides highly
accurate pointing information but lower resolution in its ro-
tational direction. Preflight estimates of the uncertainties
suggested that this effect would not be important (see, for
example, Holme and Bloxham, 1996), but here, for two data
sets from May and December 1999, I estimate the rotational
error to be of order 60′′, by far the largest contributor to the
vector data error budget. It is clear that to avoid degrading
the field models and subsequent science derived from Ørsted
data, this effect must be accounted for properly.

As such, it is timely to reconsider the modelling of attitude
error. I first summarise the basic field modelling framework,
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and the formalism for modelling the attitude error. This ma-
terial has appeared previously; however, it is hoped that a
more developed understanding of the problem will make this
new presentation useful. I follow this with results from sim-
ulations that quantify the degradation of field models from
attitude error. The method is then applied to the two Ørsted
datasets, and the magnitude of the attitude error estimated.
To aid other workers in assessing the usefulness and impor-
tance of the method, I use simulations to estimate the model
contamination caused by ignoring the error correlations. I
conclude that correct modelling of attitude error in Ørsted
data is important, and provide a recommendation for future
mission management to minimise its effects.

2. Determining a Field Model
In a current-free region, the magnetic field can be ex-

pressed as B = −∇�, where the scalar potential � satis-
fies ∇2� = 0. In spherical coordinates, the potential can be
represented by a spherical harmonic expansion of the form

� = a
∞∑

l=1

(a

r

)l+1 l∑
m=0

Pm
l (cos θ)

· [
gm

l cos(mφ) + hm
l sin(mφ)

]
+ a

∞∑
l=1

( r

a

)l l∑
m=0

Pm
l (cos θ)

· [
qm

l cos(mφ) + sm
l sin(mφ)

]
(1)

where a is the radius of the Earth, and (r, θ, φ) is a geocen-
tric spherical coordinate system. Pm

l (cos θ) are Legendre
polynomials, by convention Schmidt normalised, so that
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Measurements of the magnetic field are used to estimate the
so-called Gauss coefficients ({gm

l , hm
l } for internal sources,

and {qm
l , sm

l } for external sources), which then uniquely de-
fine the geomagnetic field outside the source regions. After
truncating the series in Eq. (1), the Gauss coefficients are ob-
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tained by a least-squares fit to the available data, minimising

eTCe−1e, (3)

where Ce is the data error covariance matrix, with elements

(Ce)i j = cov(ei , e j ), (4)

and the error vector e is given by

e = γγγγγγγγ − Am, (5)

where A is an operator calculated from Eq. (1) relating the
data vector γγγγγγγγ to the model vector m. For the linear problem
(see, e.g., Gubbins and Bloxham, 1985, for the extension to
nonlinear modelling) the maximum likelihood solution m̂ is
obtained by solving the equation

(ATCe−1A)m̂ = ATCe−1γγγγγγγγ . (6)

The field modelling process is inherently non-unique; there
are an infinite number of parameters {gm

l , hm
l , qm

l , sm
l } to

fit an unavoidably finite number of data. This problem is
best dealt with by regularisation or damping (Whaler and
Gubbins, 1981; Shure et al., 1982; Gubbins and Bloxham,
1985), but here I adopt the simpler approach (reasonable
when the data distribution is fairly even) of truncating the
spherical harmonic series. I truncate at degree lmax = 13
for internal sources, and degree 1 for external sources. Field
models from Magsat data (for example, that of Cain et al.,
1989) suggest that at Ørsted altitude the rms magnitude of
higher degree internal field components (of crustal origin)
will be of order only 2 nT, while previous models have sug-
gested that for near-Earth data, higher-degree external terms
are not significant (e.g., Langel and Estes, 1985).

3. Theory
Modelling of attitude error requires construction of the cor-

rect covariance matrix Ce. Neglecting correlations between
measurement points, consider the covariance of a particular
orthogonal data triple. Uncertainty in the orientation of the
measured reference frame (variance ψ2) introduces errors in
vector components of the magnetic field B, but not its mag-
nitude. To first order, the error is purely perpendicular to the
field, as sketched in Fig. 1. If σ 2 is the instrument variance
for each orthogonal component, and I the 3 × 3 identity, the
data error covariance matrix for a vector triple of magnetic
field components is, as given by Holme and Bloxham (1995)
(henceforth Paper 1)

C = σ 2I + ψ2
(
B2I − BBT

)
(7)

(Valid for sin ψ ≈ ψ , σ � Bψ2 (Holme and Bloxham,
1996, henceforth, Paper 2)). This matrix is most easily
applied by writing it in terms of vector outer products or
dyadics:

C = σ 2 BBT

B2
+ (σ 2 + B2ψ2)

(n̂ ∧ B)(n̂ ∧ B)T

(n̂ ∧ B)2

+ (σ 2 + B2ψ2)
(B ∧ (n̂ ∧ B))(B ∧ (n̂ ∧ B))T

(B ∧ (n̂ ∧ B))2
(8)

Fig. 1. The directional dependence of orientation error.

where n̂ is an arbitrary unit vector not parallel to B. Although
this representation may be unfamiliar, it is identical to the
standard diagonalisation of a matrix by determination of its
eigenvalues and eigenvectors, the latter being the unit vectors
in the dyadics.

In Paper 2, this formalism was extended to cover the case
of Ørsted, where the attitude uncertainty itself is anisotropic.
It is assumed that this takes the form of a small angular
uncertainty ψ in rotation perpendicular to the camera bore
sight (the pointing angle), and a larger rotational uncertainty
χ about the bore sight. The covariance matrix is now

C = σ 2 BBT

B2

+ (σ 2 + (n̂ ∧ B)2χ2 + (n̂.B)2ψ2)
(n̂ ∧ B)(n̂ ∧ B)T

(n̂ ∧ B)2

+ (σ 2 + B2ψ2)
(B ∧ (n̂ ∧ B))(B ∧ (n̂ ∧ B))T

(B ∧ (n̂ ∧ B))2
(9)

where n̂ is no longer arbitrary, but is a unit vector in the di-
rection of the star camera bore sight (assumed not parallel to
B). Note that to calculate C, only the star camera direction
and the measured magnetic field are required—no additional
details of the spacecraft trajectory or motion are necessary.
If the star camera axis was aligned with the field, and the
appropriate limits were taken to obtain the unit vectors, un-
certainty about this axis would have no first order effect on
the field measurement. If the field is perpendicular to the star
camera (so that (n̂ ∧ B)2 = B2 and n̂.B = 0), then the error
is maximised, although note that it acts only in one of the
error eigendirections, so even in this case the expected error
is less severe than if this large attitude error were isotropic.
To emphasise this point, assume that only the rotational er-
ror is significant, so that ψ = 0. In this case, the covariance
matrix can be written in a particularly simple form

C = σ 2I + χ2(n̂ ∧ B)(n̂ ∧ B)T. (10)

However, to obtain the matrix inverse, required in field mod-
elling (Eq. (6)), it is easiest to return to the dyadic form.
Because the dyadics are orthogonal and normalised to unit
length, the inverse of the covariance matrix (9) is particularly
simply expressed as

C−1 = 1

σ 2

BBT

B2
+ 1

(σ 2 + (n̂ ∧ B)2χ2 + (n̂.B)2ψ2)

· (n̂ ∧ B)(n̂ ∧ B)T

(n̂ ∧ B)2
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+ 1

(σ 2 + B2ψ2)

· (B ∧ (n̂ ∧ B))(B ∧ (n̂ ∧ B))T

(B ∧ (n̂ ∧ B))2
. (11)

This expression provides the inverse data covariance matrix
for a triple of vector data. The full data covariance matrix
(Eq. (4)) will be block diagonal, with 3x3 blocks as calculated
from Eq. (11).

It is possible to extend this formalism further in several
ways. While not relevelent for the current application, for
completeness I discuss two such extensions in appendices;
in Appendix A, the simultaneous consideration of vector and
scalar data, and in Appendix B the use of directional infor-
mation only from three component data.

4. How Damaging is Orientation Uncertainty?
Papers 1 and 2, and the specific data analysis later in this

paper, concentrate on the expected improvement in the mag-
netic field model to be achieved by the correct treatment of
attitude error. However, it is also important to quantify the
significance of attitude error when correctly treated. I inves-
tigate this by means of numerical simulation. I construct a
network of data points with approximately equal area distri-
bution, and with altitude of 400 ± 50 km (so as to mimic a
Magsat-like satellite). On these points I calculate values of
the vector field from a defined field model, and add indepen-
dent Gaussian errors, both isotropic σ and in attitude ψ . I
then invert these simulated data for a magnetic field model.
The quality of the model is defined by the deviation from
the original model at the Earth’s surface; as shown by Lowes
(1966) amongst others a convenient measure of this is given
by the integrated mean square field deviation at the Earth’s
surface

1
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where the superscript 0 denotes the original model. The ab-
solute value of this quantity is not especially meaningful;
it will depend on the number of data points, the degree of
truncation and other simulation details. However, the rela-
tive error between simulations is a useful measure of model
quality, and turns out to be broadly independent of simula-
tion details. (A clear demonstration of this can be seen in the
related study of the influence of crustal field error in main
field modelling in Holme and Jackson (1997) (subsequently
Paper 3); for this case analytic expressions for the misfit have
been derived by Dr. Frank Lowes.)

A set of such simulations is performed for a range of values
of σ and ψ , assuming the simplest case of isotropic attitude
error, modelled by data covariance matrix (8). The results
are averaged over 100 simulations, and the rms vector mis-
fit plotted in Fig. 2. This figure suggests an approximate
empirical linear relationship:

Misfit = A(σ + 0.2Bψ) (13)

where A is a constant depending on simulation details (num-
ber of data, harmonic truncation, etc.). Bψ is generally taken

Fig. 2. Contour plot (in nT) of rms deviation of the vector field from the
input model, averaged over the Earth’s surface (Eq. (12)), for a range of
applied data errors. Averages of 100 simulations with 2070 data triples
grouped around 400 km (satellite altitude), least squares fit, truncation at
degree 14. Scaled angle error calculated assuming a conservative value of
satellite altitude B = 29000 nT. Exact misfit values depend on simulation
details and so are not meaningful; relative values are robust.

as the estimate of the magnitude of field error; however, with
this estimate these simulations show that correctly treated
attitude error is only 20% as damaging as isotropic instru-
ment error of the same magnitude. Further, for Ørsted, the
damage from poorly determined attitude will be even less, as
only one of the eigenvectors of the covariance matrix, rather
than two as here, is badly affected (see Eq. (9)). However,
as shown in Papers 1 and 2, should the error be modelled
incorrectly as isotropic, much larger errors will result (see in
particular figure 3, Paper 1).

5. Data
To seek evidence of attitude error in Ørsted data, I con-

sider vector magnetometer (CSC) data from six days in May
(10th–11th, 16th–17th, 21st–22nd), and from an extremely
magnetically quiet period in December (20th–22nd). During
these periods, satellite altitude varied between 690 km and
880 km. The data (designated MAG-R) were hand corrected
for timing errors by Nils Olsen and the Ørsted data centre.
They are boxcar-averaged over 1.13 s intervals (the internal
averaging period of the star camera). Nightside data only
are selected to limit the influence of external fields. The data
are heavily decimated in time, but weighted so as to give
a higher sampling rate near the equator, and lower near the
poles. About 20 data points from May 10th have K p = 2o;
all other data are K p = 1+ or less. No additional scalar data
from the Overhauser magnetometer (OVM) are used; as a re-
sult the data sets are gappy, with a particularly large hole over
the South Atlantic anomaly where the attitude information
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Fig. 3. Data distribution. (a) May—946 vector data triples (circles), 392 total-intensity data (crosses). (b) December—1169 vector data triples, 547
total-intensity data.

Table 1. RMS misfits (in nT) for field models to the data, calculated assuming (i) isotropic errors (σ = 3 nT), and (ii) an additional angular uncertainty in
the SIM rotation of χ = 60′′. eF is for the high latitude total intensity data. (eX , eY , eZ ) are the misfits in the Earth-centred spherical coordinate system.
(eB , e⊥, e3) are respectively the misfits in the main field direction, the direction perpendicular to both the main field and the star camera axis, and the
third orthogonal direction.

eF eX eY eZ eB e⊥ e3

(i) Isotropic (a) May 3.11 5.82 5.60 5.19 2.83 8.49 3.47

modelling (b) December 3.53 5.39 5.61 4.79 2.64 8.10 3.28

(ii) Anisotropic (a) May 2.87 5.90 5.73 5.63 2.24 9.17 3.18

modelling (b) December 3.39 5.50 5.70 5.11 2.00 8.68 3.10

has been lost. Were the purpose of this work to produce an
accurate model of the geomagnetic field, such gaps would be
unacceptable; however, within the framework of this study, it
was decided to restrict the data to the one (vector) instrument
alone. At high latitudes (>50◦) only intensity measurements
(F) (calculated from the vector data) were used, to limit pos-
sible contamination by field aligned currents, and also to
mimic standard field modelling treatments as closely as pos-
sible. Outliers were removed during the modelling process,
resulting in the elimination of some high latitude intensity
data, and, for the May data, 10 vector data with extremely
large attitude error (probably arising from periods when the
star imager (SIM) was not fully functional). The resulting
data distributions are shown in Fig. 3.

The modelling technique used is extremely (possibly
overly) simple, since the external fields are not parameterised
with a Dst dependence (Langel et al., 1996; Olsen et al.,
2000), and secular variation over the period of each data set
is ignored. The major complication is that the data must
be transformed from spacecraft coordinates. The angular
transformation between the SIM and CSC is solved for si-
multaneously with the calculation of a main field model,
using transformation programs developed by Dr. Karlheinz
Goedderz (GFZ CHAMP team) (see also Olsen et al., 2000).
Fortunately, the determination of these angles turns out to be
essentially independent of the treatment of attitude error.

I begin by modelling the vector data errors isotropically,
and with vector and scalar data weighted equally (σ = 3 nT).
The fits of the models to the data are listed in Table 1(i). The
results for the two data sets are remarkably similar.

In the standard Earth centred spherical coordinate system,
where (X, Y, Z) are North, East, and Down, the misfit to the

data is of order 5–6 nT for each component. However, as-
suming that the predicted attitude error is indeed the major
cause of error, it is instructive to examine the misfit to the data
in the natural coordinate system. The three axes are given by
the vectors forming the dyadics of the covariance matrix in
Eq. (9), namely the direction of the field (denoted B), the di-
rection perpendicular to both the field and the SIM boresight
(denoted ⊥), and the third direction making up the orthogo-
nal set (denoted 3). This reference frame obviously depends
on both the direction of the field and the direction of the SIM,
and so is newly defined for each data point. The much larger
error in the perpendicular direction is obvious. This error, in
combination with the field geometry and star camera direc-
tion, also explains the lower value of eZ relative to eX and
eY . These results are in agreement with those of Olsen et al.
(2000) who first commented on the error anisotropy; note,
however, that they use a slightly different coordinate system.

Prompted by these results, I generate a second field model,
explicitly considering this error anisotropy (statistics listed
in Table 1(ii)). As e3 is not much greater than eB , I assume
for simplicity that pointing error is negligible, and adopt the
simplified data covariance matrix (10), assuming χ = 60′′.
This value was inspired by the scatter about a smooth curve
fit to SIM data from early in the mission. This high value
is justified a posteriori from the modelling below, and dis-
cussed further in Section 7. As data in the ⊥ direction is now
given a lower weighting, the new model has a higher value
of e⊥. In other words, as would be expected, modelling the
anisotropy slightly increases the anisotropy observed in the
residuals. The misfit to the cartesian components is also
increased, but the total intensity data and well-determined
eigenvector directions are better fit. The fits to the vector
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Fig. 4. Plot of differences in the three magnetic components between the two models at the Earth’s surface. Dotted contours denote negative values. The
solid line marks the dip equator. The F plot is the rms total vector error, not the difference between total intensities.

data field magnitude (2.24 nT in May, and 2.00 nT in De-
cember) are particularly good. The rms vector difference
between the two models at the Earth’s surface is 10.7 nT, and
it peaks at over 30 nT. Differences of this magnitude are very
important; for example, they are comparable in magnitude
to large crustal anomalies.

In Fig. 4, I plot the difference in the field models for May
of Tables 1(ia) and (iia). The X , Y , and Z plots are the
differences in these components, and F the rms value of
these three components (not the difference in the value of
the total intensity between the two models). The pattern of
the difference arises from several effects. First, there are
large differences in areas with data gaps (for example, the
South Atlantic anomaly), where the field model is controlled
by the fit to data around the edges of the gaps. Second, the
largest changes are close to the magnetic equator. As the
star camera lies in the plane perpendicular to the orbit, and
the field is (by definition) horizontal, the large attitude error
direction is approximately vertical. This gives rise to a weak
form of the Backus effect or perpendicular error effect (Stern
and Bredekamp, 1975; Lowes 1975), which is well known to
be most significant near the magnetic equator. Third, other
strong differences (in the South Pacific and the South East
United States) are in regions where the magnitude of n̂ ∧
B is particularly large, and so the effects of attitude error
particularly significant.

Is the predicted error of 60′′ consistent with the data resid-
uals? To address this question I examine the statistics of the
data misfit in the three orthogonal directions (B, ⊥, 3). If
the various errors are assumed of known distribution (most
simply, normally distributed), then estimates of σ, χ, ψ can
be obtained from the data residuals by the solution of the
appropriate maximum likelihood problem; this procedure is
described in Appendix C. For greater accuracy, all available
data, not just the decimated data, were used (although the

Table 2. Estimates for isotropic and attitude standard deviation from max-
imum likelihood analysis for full 1.13 s data.

# data σ χ ψ

May 36942 2.2 nT 75′′ 17′′

December 49082 1.9 nT 75′′ 18′′

decimated data give very similar results). The results are
presented in Table 2. The different σ values between May
and December probably reflect different levels of magnetic
activity (noise from external fields) during the two periods,
but the angular parameters remarkably consistent, if slightly
larger than expected. This may be due to non-normality of
the errors; in particular, it is not clear that the uncertainty
in the star camera angles will necessarily be normally dis-
tributed, and longer-tailed distributions would increase the
variance estimates. In Fig. 5 I plot the distributions of the
weighted residuals against a normal curve for comparison.
The general shape of the histograms is correct, although the
high peaks in the eB and e⊥ directions suggest long tails
to the distribution, resulting in an increased estimate of the
variances.

The argument presented here is slightly inconsistent, as
I have (for example) estimated ψ from residuals obtained
from modelling assuming its value to be 0. However, using
residuals from modelling assuming isotropic errors produces
similar results, so I believe the values presented here to be
at least of the right order of magnitude. These values sug-
gest that modelling non-zero ψ (from attitude error or field
aligned currents) could be useful, although because the mag-
nitude of the resulting attitude error is not much greater than
the isotropic error, the effect on the calculated field model is
likely to be small (see Paper 2).
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Fig. 5. Histograms of the normalised data misfits for the December data in the three perpendicular directions, with each residual normalised to unit variance
with the parameter values given in Table 2. The continuous curves are predictions assuming a normal distribution.

Table 3. Results for simulations of attitude errors. Values listed are rms differences between the true model, and the estimate derived from modelling noisy
synthetic data. Averages of 1000 simulations for the data distribution of the May data set. Misfits are rms misfit to the input model at the Earth’s surface
(Eq. (12)). The percentage quantity in brackets is the worsening of the solution over the optimal arising from incorrect treatment of attitude error.

Input errors Assumed modelling error

σ χ 0′′ 30′′ 60′′

2 nT 60′′ 8.04 nT (64%) 5.25 nT (7%) 4.91 nT

2 nT 30′′ 5.32 nT (16%) 4.58 nT 4.74 nT (3%)

2 nT 0′′ 4.03 nT 4.33 nT (7%) 4.69 nT (16%)

5 nT 60′′ 12.23 nT (10%) 11.48 nT (3%) 11.16 nT

5 nT 30′′ 10.67 nT (1%) 10.53 nT 10.73 nT (2%)

5 nT 0′′ 10.10 nT 10.20 nT (1%) 10.59 nT (5%)

The misfit in the B̂ direction (eB) is surprisingly small,
and approaches the expected contribution from the crustal
field (degrees 14 and higher) of around 2 nT. With better
modelling of external and ionospheric fields, it may become
important to consider error anisotropy arising from crustal
contamination. This is outlined briefly in Appendix D.

6. Simulations
In the previous section, I have shown that modelling for

attitude error in Ørsted data produces a large (over 30 nT for
this example) change in the field model. However, this does
not prove that the change is an improvement. To investigate
this, I use simulations to examine the penalty resulting from
modelling the data incorrectly. I take the identical data dis-
tribution (in scalar and vector data) from the real May dataset
described above, and using the model determined from those
data, calculate synthetic data, as in Section 4 adding both
isotropic and attitude Gaussian errors. I consider an isotropic

error σ of 2 nT or 5 nT (covering the optimistic and pes-
simistic ends of what could be achievable with Ørsted data)
and attitude errors of χ = 0′′, 30′′, and 60′′. For simplicity,
ψ is set to 0. A model is then fit to the data assuming attitude
errors of 0′′, 30′′, and 60′′. I average the results of 1000 sim-
ulations, and present the results in Table 3, giving again the
rms misfit to the input field model at the Earth’s surface. As
usual, the absolute values depend on the simulation details,
but relative values should be robust. An incorrect estimate
of the attitude error increases model misfit. For ease of com-
parison I include the percentage increase of the misfit from
the correct (self-consistent) modelling.

As might be expected, the results for the extreme case are
most striking; with attitude error of χ = 60′′ and isotropic
error of σ = 2 nT, failure to model the attitude error increases
the model misfit by 64%. However, from Table 2, such
“extreme” values seem to be those appropriate for both May
and December Ørsted data sets!
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Fig. 6. Error distribution for synthetics, input uncertainties σ = 2 nT, χ = 60′′. (a) Errors modelled isotropically. (b) Errors modelled correctly. Dashed
contours denote negative values.

It is also interesting to examine the spatial distribution of
the errors, particularly in comparison with model differences
between different error treatments for the real data, plotted in
Fig. 4. The error details differ considerably from simulation
to simulation, but for an impression of the pattern, I select a
characteristic simulation (σ = 2 nT, χ = 60′′) with errors
similar to the mean values. The error distributions for these
simulations are plotted in Fig. 6, in (a) with an incorrect
(isotropic) error treatment, and in (b) with error covariance
correctly modelled. The improvement in model from using
a correct error model needs no further emphasis. As with the
real data (Fig. 4), the largest model differences are in data
gaps, and near the dip equator. However, this error pattern
is less clear in the simulation than with the real data. This

is probably due to error correlations between locations for
the real data (correlated external noise, crustal effects, and
especially correlated attitude error).

Table 3 shows that in general, incorrectly estimating the
magnitude of the attitude error is less damaging than not mod-
elling it. In particular, little damage should result with the
real data from modelling the attitude uncertainty as χ = 60′′

when it should perhaps be χ = 70′′. There is one vector
component in which the data are poor; that this component
is downweighted is more significant than by how much. In
contrast, the penalty (essentially due to an effective reduc-
tion in the number of data) from downweighting a direction
unnecessarily (when the errors are in reality isotropic), is
generally smaller (and much smaller, for example, than with
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isotropic error only using Z data rather than all three com-
ponents).

7. Conclusions
By now, it should be obvious that I recommend modelling

of the attitude error in Ørsted data to allow the extraction of
the maximum amount of information from the data. Such
modelling is particularly important for the data sets consid-
ered here, but will also apply even if in future the attitude
error can be reduced. If the reader doubts this, consider the
alternative. It is customary to regard data with large misfit to
the model as outliers, and remove them from the modelling
process. However, if the error is not modelled, how is this to
be achieved? If attitude error is the cause, and (say) the Y -
component is compromised, should the X and Z components
be trusted? As should hopefully be clear from the formalism,
and is discussed in Paper 2, the implementation of the method
is straightforward. The only information required in addi-
tion to the magnetic field components is the direction of the
star camera. Should this for some reason be lacking, I would
recommend modelling even Ørsted data as having isotropic
attitude error (Eq. (8)). The loss of information from the 3rd
direction is more than compensated for by the removal of the
biasing n̂ ∧ B direction, and as noted in Section 5, there is
evidence of some attitude error, or attitude-like field-aligned
current error, in the 3rd direction. As more data become
available, it could prove fruitful to model this error as well;
indeed, parameterising for field-aligned currents using this
formalism was previously suggested in Paper 2. However,
the anisotropy due to this direction is smaller than the rota-
tional direction, and so the effect on the field model is much
smaller.

Why should χ be so large? At time of writing, this has
not been explained. Pre-flight tests of the SIM suggested
a much smaller value; uncertainties of 2–3′′ in the pointing
direction, and 10–18′′ in rotation, and it appears to be per-
forming according to these specifications (J. L. Jørgensen,
pers. comm.). One possibility would be a small error in the
timing calibration between the SIM and CSC, although this
will not account for the whole effect. The error is certainly
not completely random; there is evidence of correlation in the
error between successive orbits (Nils Olsen, pers. comm.),
and a plot of e⊥ shows significant power over a period of
about 8 minutes; interestingly, this is the approximate time
for a star to cross the field of view of the camera.

I have presented a statistical method to deal with the at-
titude uncertainty arising from the anisotropy of the Ørsted
star camera, so as to produce the minimum contamination
in main field modelling. However, ideally it would be best
to eliminate or reduce the uncertainty, rather than have to
model it. Efforts are continuing to characterise, explain and
eliminate this error at source, and attempts are being made to
smooth the attitude data, although its anisotropy and corre-
lated nature make this difficult. These issues are beyond the
scope of the current paper. However, a third issue is related
to this study, so I mention it here. As noted in the theory
section, the effect of the attitude error is highly dependent on
the angle between the magnetic field and the SIM. If the SIM
axis is aligned with the field, the large attitude uncertainty
does not affect the measurements. Currently, the satellite is

positioned in its orbit such that the star camera points approx-
imately perpendicular to the orbital plane. This has many
operational advantages; for example, it limits the chance of
the star camera being blinded by the sun when the satellite
is in a noon-midnight orbit. As the magnetic field broadly
speaking lies in or close to the orbital plane, the effect of
the attitude error is maximised. However, it is planned for
operational reasons to rotate the satellite at some point. If
this was done so that the SIM axis lay in the plane of the
orbit, the effects of uncertainty in the attitude error would
be significantly reduced (by reducing the average of |n̂ ∧ B|
over the orbit). This might be particularly useful when the
satellite orbit is close to the dawn-dusk meridian (probably
at any local time between 3 o’clock and 9 o’clock), when
the risk of pointing the star camera towards the sun will be
reduced.
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Appendix A. Combined Treatment of Vector and
Scalar Satellite Magnetic Data

Magsat carried both a vector and scalar magnetometer
(Langel et al., 1982). When operating correctly, the scalar
instrument was twice as accurate as the vector instrument.
Modelling of Magsat data has used either vector or scalar
data, but not both at the same time and place. However,
Lowes and Martin (1987) suggested modelling the field us-
ing both vector and scalar data, combining the advantages
of the two data sets (accurate scalar intensity from the scalar
instrument, plus directional information from the vector in-
strument). They argued that because the vector uncertainties
were dominated by attitude uncertainty, error correlations
between the scalar and vector data could be neglected. How-
ever, with correctly modelled attitude error, correlations will
be significant. Here, we describe how to combine the two
data sets correctly.

Following Magsat rather than Ørsted, the orientation of the
spacecraft is assumed equally well known in all directions, so
the appropriate covariance matrix for the vector data is given
by Eq. (8). It follows that in the reference frame defined by
the field, the three “field components” (the field strength and
the two null directions1) are independent. Hence, assuming
that the sampling times of the two data sets are the same, the

1This can be thought of in terms of modelling the data by its magnitude and
direction (for example, intensity, declination, and inclination)—compare
with equation (A6) in Paper 3.
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Fig. 7. Simulation of effect of combining vector and scalar data. Each data point is an average of 100 simulations. Scalar data accuracy 2 nT, vector data
as given by axis, attitude by symbol type.

measurement of total intensity from the vector instrument
can simply be replaced by a best estimate combined from
the vector and scalar data. If the two measurements are un-
correlated (errors in the data are dominated by instrumental
noise rather than external fields or unmodelled crustal field,
for example), this best estimate of the field is one with direc-
tion measured by the vector instrument, but with amplitude
F calculated from a suitably weighted combination of the
vector and scalar measurements:

B′ = F

|B|B; F = σ 2
s B2 + σ 2

v B2
s

σ 2
s + σ 2

v

; σ 2
F = σ 2

s σ 2
v

σ 2
s + σ 2

v

(A.1)

where B′ is the new field vector, B the vector measurement,
Bs the scalar measurement, and σ 2

s and σ 2
v are the measure-

ment uncertainties of the scalar and vector measurements
respectively. The covariance matrix is then

C = σ 2
F

BBT

B2
+ (σ 2

v + B2ψ2)
(n̂ ∧ B)(n̂ ∧ B)T

(n̂ ∧ B)2

+ (σ 2
v + B2ψ2)

(B ∧ (n̂ ∧ B))(B ∧ (n̂ ∧ B))T

(B ∧ (n̂ ∧ B))2
. (A.2)

If σs < σv (for Magsat, σv ≈ 2σs), a significant improvement
in model quality could be expected from using this form of
the data and covariance matrix. Note also that the scalar
(intensity) data are incorporated while keeping the modelling
linear. This consideration is not important for main field
modelling, where with modern computing the solution for,
e.g., lmax = 13 is very rapid. However, with much higher
truncation levels (such as the degree 63 model of Cain et
al. (1989)) to include crustal fields, a linear problem with a
unique solution which can be determined without iteration is
still very valuable.

To confirm that the formalism works, I consider some sim-
ulations, similar to those described above in Section 4, but
with added scalar data at each point. Data are synthesised
with scalar data error σ = 2 nT, isotropic attitude error of
either ψ = 0.005◦ or ψ = 0.05◦, and vector data errors
σv from 3 nT to 9 nT. In each case, three simulations are
considered, the first with vector data only, the second with
vector data and scalar data at each point (considered inde-
pendent), and third with the data combined as described in
this section. The resulting errors are plotted in Fig. 7. As
earlier, the absolute values of the misfits are not meaningful,
only the ratio of misfits between the different curves. In both
cases the addition of scalar data significantly improves the
model, and there is little difference between considering the
scalar data separately or with the new formalism (the small
difference probably arises from the fact that the errors in the
new formalism are no longer exactly Gaussian). It might
seem that scalar and vector data can be considered together,
as advocated by Lowes and Martin (1987), but this ideal
case includes no correlations between the two instruments.
In practice, noise sources (for example, external fields) are
likely to be correlated, and this can be treated much more
simply in the new formalism (essentially by just increasing
the variance estimate) than by formally considering the cor-
relation between separate scalar and vector data.

This formalism allows for the inclusion of the highly accu-
rate scalar intensity data, as well as directional information,
without redundancy in measurements. For Magsat, we might
expect some correlation between vector and scalar measure-
ments, as the scalar magnetometer was used to correct the
drift in the vector fluxgate magnetometer, amounting to 20 nT
over the lifetime of the satellite (Langel et al., 1982). How-
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ever, that drift was slow, and is calculated from many vector
and scalar data. Thus, the resulting correlation between in-
dividual data from the two data sets should be negligible.
However, if correlation is a worry, or the noise in the vector
measurements is much larger than that in the scalar measure-
ments, it may be better just to adopt the scalar measurement
Bs for F along with its associated standard deviation σs .

This problem is not purely of historical interest. The
Cassini mission to Saturn will provide similar data: at clos-
est approach, the proton magnetometer is to be switched to
scalar mode, but less accurate vector measurements will be
provided by the fluxgate magnetometer (Dunlop et al., 1999).
The production of the best possible models of the Saturnian
field will require correct treatment of these data.

Appendix B. Using Only Directional Information
from Three Component Data

It is well known that field modelling using total inten-
sity data only is compromised by the perpendicular error or
Backus effect (Stern and Bredekamp, 1975; Lowes, 1975).
When vector data are not available (for example, due to a
satellite carrying only a scalar magnetometer, or because of
gaps in attitude information as found for Ørsted over the
South Atlantic anomaly), it is common to try to replace these
data, for example either by using data from other epochs
forward or backward continued with a model of secular vari-
ation, or by construction of synthetic data (see, for example,
Macmillan and Quinn, 2000). However, such “data” are
obviously less reliable than real data. Only the vector infor-
mation is required; the scalar intensity of the data should not
be considered as an alternative to real measured scalar inten-
sity. This could be accomplished by using declination and
inclination values. A simple alternative (which also keeps
the modelling problem linear) is to downweight the field
magnitude information of the synthetic data. For simplic-
ity assuming isotropic attitude error (Eq. (7)), this can be
achieved with the covariance matrix

C = σ 2I + ψ2
(
B2I − BBT

) +
(

ω2

B2

)
BBT (B.1)

where ω � σ, Bψ is a very large number which ensures that
the modelled variance of the synthetic data in the direction of
the main field is enormous, and therefore that this information
does not influence the model. In my preferred dyadic form,
this matrix is written

C = (σ 2 + ω2)
BBT

B2
+ (σ 2 + B2ψ2)

(n̂ ∧ B)(n̂ ∧ B)T

(n̂ ∧ B)2

+ (σ 2 + B2ψ2)
(B ∧ (n̂ ∧ B))(B ∧ (n̂ ∧ B))T

(B ∧ (n̂ ∧ B))2
(B.2)

(compare with Eq. (8)).

Appendix C. Maximum Likelihood Estimation of
Variances

We wish to estimate from the data residuals the three pa-
rameters σ, ψ, χ as defined in the covariance matrix (9). The
errors are supposed uncorrelated and normally distributed, so
that

eB = σN(0, 1)

e⊥ = σN(0, 1) + χ |n̂ ∧ B|N(0, 1) + ψ(n̂.B)N(0, 1)

e3 = σN(0, 1) + ψ BN(0, 1). (C.1)

To simplify notation, define

B⊥ = |n̂ ∧ B|; B‖ = n̂.B. (C.2)

First, consider only the e⊥ ≡ X direction. The probability
that a particular misfit Xi lies in the range X to X + �X is
given by the appropriate normal probability density function

exp
[−X2/(2(σ 2 + χ2 B2

⊥ + ψ2 B2
‖ ))

]
√

2π(σ 2 + χ2 B2
⊥ + ψ2 B2

‖ )
d X. (C.3)

The likelihood function that a particular set of n observations
{Xi } arises from such a distribution with defined σ, ψ, χ is
then given by

L(σ, ψ, χ)

=
n∏

i=1

exp
[−X2

i /(2(σ 2 + χ2 B2
⊥i

+ ψ2 B2
‖i
))

]
√

2π(σ 2 + χ2 B2
⊥i

+ ψ2 B2
‖i
)

d X. (C.4)

Given a particular data set, the maximum likelihood esti-
mates of σ, ψ, χ are those which maximise this function, or
equivalently minimise the function

− ln [L(σ, ψ, χ)]

= 1

2

n∑
i=1

[
ln

(
σ 2 + χ2 B2

⊥i
+ ψ2 B2

‖i

)

+ X2
i

σ 2 + χ2 B2
⊥i

+ ψ2 B2
‖i

]
+ constants. (C.5)

Seeking a local extremum of the function (C.5) by stan-
dard partial differentiation methods yields the following three
equations:

∂

∂σ
:

n∑
i=1

(
1

σ 2 + χ2 B2
⊥i

+ ψ2 B2
‖i

− X2
i(

σ 2 + χ2 B2
⊥i

+ ψ2 B2
‖i

)2

)
= 0 (C.6)

∂

∂χ
:

n∑
i=1

(
B2

⊥i

σ 2 + χ2 B2
⊥i

+ ψ2 B2
‖i

− X2
i B2

⊥i(
σ 2 + χ2 B2

⊥i
+ ψ2 B2

‖i

)2

)
= 0 (C.7)

∂

∂ψ
:

n∑
i=1

(
B2

‖i

σ 2 + χ2 B2
⊥i

+ ψ2 B2
‖i

− X2
i B2

‖i(
σ 2 + χ2 B2

⊥i
+ ψ2 B2

‖i

)2

)
= 0. (C.8)

Then, taking σ 2 × (C.6) + χ2 × (C.7) + ψ2 × (C.8) gives

1

n

n∑
i=1

X2
i

σ 2 + χ2 B2
⊥i

+ ψ2 B2
‖i

= 1 (C.9)
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showing that the maximum likelihood estimate gives the
mean value of the weighted variance as unity, as required.
This expression can also easily be seen to be consistent with
various limiting cases; for example, if χ = ψ = 0, then

σ 2 =
n∑

i=1

X2
i

/
n (C.10)

the standard expression for the sample variance.
Solution of the equation system ((C.6)–(C.8)) is not pos-

sible in closed form; in practice it is easiest to seek estimates
of σ, ψ, χ by direct numerical minimisation of Eq. (C.5).
Because the “data” are inherently noisy (by definition, the
signal to noise ratio of one datum is unity) all three error
directions are used to obtain the parameters. Thus, writing
Y ≡ e3 and Z ≡ eB , the generalisation of Eq. (C.5) which is
minimised in this paper to estimate the parameters is

f (σ, χ, ψ) =
n∑

i=1

[
ln

(
σ 2 + χ2 B2

⊥i
+ ψ2 B2

‖i

)

+ X2
i

σ 2 + χ2 B2
⊥i

+ ψ2 B2
‖i

]
+

n∑
i=1

[
ln

(
σ 2 + ψ2 B2

i

) + Y 2
i

σ 2 + ψ2 B2
i

]

+
n∑

i=1

[
ln

(
σ 2

) + Z2
i

σ 2

]
. (C.11)

Appendix D. Crustal Complications
As discussed in Paper 3 and a number of other references,

unmodelled crustal field creates an anisotropic contribution
to the field error; the error in the vertical direction is

√
2×

that in either horizontal direction. For high-degree models,
when the crustal field is included, this effect can be ignored,
as external fields will provide the largest source of error in the
measurement. For lower-degree truncated models, however,
even at Ørsted altitude, crustal error may be important. Then,
for no attitude error, the covariance matrix would be

x̂x̂Tσ 2 + ŷŷTσ 2 + ẑẑT2σ 2 (D.1)

where (x̂, ŷ, ẑ) are the unit vectors in the North, East, and
Down directions. In Paper 3, it was demonstrated that a 5%
degradation of field model quality would be likely if this error
was not properly accounted for. In combination with attitude
error for Ørsted, the correct covariance matrix becomes

C = σ 2 BBT

B2
+ (σ 2 + (n̂ ∧ B)2χ2 + (n̂.B)2ψ2)

· (n̂ ∧ B)(n̂ ∧ B)T

(n̂ ∧ B)2

+ (σ 2 + B2ψ2)
(B ∧ (n̂ ∧ B))(B ∧ (n̂ ∧ B))T

(B ∧ (n̂ ∧ B))2

+ σ 2ẑẑT. (D.2)

It is possible to calculate an analytic inverse for this matrix,
but it is very messy, and a numerical calculation is almost
certainly more useful.
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