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Abstract. Various effective algorithms have been proposed in the past two decades for nonlinear
PDEs arising from the unconstrained total-variation-based image denoising problem regularizing the
total variation constrained minimization model. Such algorithms can be used to obtain a satisfactory
result as long as a suitable regularization parameter balancing the trade-off between a good fit to
the data and a regular solution is given. However, it is generally difficult to obtain a suitable
regularization parameter without which restored images can be unsatisfactory: if it is too large,
then the resulting solution is still contaminated by noise, while if too small, the solution is a poor
approximation of the true noise-free solution. To provide an automatic method for the regularization
parameter when the noise level is known a priori, one way is to address the coupled Karush–Kuhn–
Tucker (KKT) systems from the constrained total variation optimization problem. So far much
less work has been done on this problem. This paper presents an iterative update algorithm for a
Lagrange multiplier to solve the KKT conditions, and our proposed method can adaptively deal with
noisy images with different variances σ2. Numerical experiments show that our model can effectively
find a highly accurate solution and produce excellent restoration results in terms of image quality.
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1. Introduction. In the image formation process (e.g., recording, transmission),
the generation of noise in an observed image is usually unavoidable. In many impor-
tant cases, high noise levels can add much difficulty to further processing tasks such as
automatic recognition of important features. Therefore, effective denoising plays an
important role in the processing, and hence understanding of noisy images becomes
a fundamental task of computer vision.

The goal of denoising is to remove noise or spurious details from a given, pos-
sibly corrupted, digital picture while maintaining essential features such as edges.
Approaches to image denoising have been developed along three main directions: (i)
wavelet-based methods, for example, methods based on wavelet thresholding intro-
duced by Donoho and Johnstone in [28]; (ii) stochastic or statistical methods—a
prominent example is the Markov random field approach introduced by Geman and
Geman [31]; and (iii) PDE or variational approaches [2, 49]. In the past two decades,
the third direction, based on the calculus of variations and PDEs, has seen great suc-
cess [2, 22, 25, 24, 40, 45, 46]. In particular, it is observed that this approach reduces
oscillations near discontinuities. One important reason for their success is that these
models are particularly well suited to imposing geometric constraints (such as regular-
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ity) on the solutions sought. Among the best known and most influential examples is
the Rudin–Osher–Fatemi (ROF) total-variation-based image denoising model [2, 40].
Denoising models such as the ROF model can be easily adapted to different ill-posed
problem situations [3, 29] and hence have attracted a great deal of attentions in the
image processing community.

In this paper, we focus our attention on the third direction, i.e., the PDE-based
variational formulation. We are mainly concerned with the popular denoising tech-
nique with total variation (TV), introduced in [40]. The TV seminorm does not
penalize discontinuities in the image and thus allows us to recover the edges of the
original image. The idea of our study may be generalized to other models.

Let z(x, y) : Ω �→ R+ be a given image containing an unknown additive noise η,
where Ω is a convex, bounded region of R2 and u is a true image such that

(1.1) z(x, y) = u(x, y) + η(x, y).

For this inverse problem (1.1), there exist many models restoring u [46, 24]. The ROF
model [40] takes the form

(1.2) min
u

TV (u) :=

∫
Ω

|∇u| dxdy s.t. F (u) :=
1

2
(‖u− z‖2L2(Ω) − σ2) = 0,

where we assume that the L2(Ω)-norm of the noise data defined by

(1.3) σ =
( ∫

Ω

|z(x, y)− u(x, y)|2 dxdy
) 1

2

is known a priori. This problem has the form of a constrained optimization problem
with a TV regularization seminorm as the objective function and the equality (1.3)
as the constraint. Since the objective TV (u) is not differentiable when |∇u| = 0, it is
common to consider a modified minimization problem of the form (1.2)

min
u

TVε(u) :=

∫
Ω

√
|∇u|2 + ε dxdy s.t. F (u) = 0,(1.4)

where ε > 0 is a small parameter. To study the solution u, we need the space of
functions of bounded variation on Ω defined by

(1.5) BV (Ω) =
{
u ∈ L1(Ω) : TV (u) < +∞

}
.

Clearly, BV (Ω) is a Banach space with respect to BV -norm: ‖u‖BV = ‖u‖L1(Ω) +
TV (u). We also have W 1,1(Ω) ⊂ BV (Ω) ⊂ Lp(Ω) ⊂ L1(Ω) for 1 � p � d/(d − 1),
where d denotes the dimension (d = 2 in this work) [1].

Denoting the Lagrangian functional for the constrained problem (1.4) by

(1.6) Eε(λ, u) :=

∫
Ω

√
|∇u|2 + ε dxdy +

λ

2

(∫
Ω

|u− z|2 dxdy − σ2
)
,

where λ is a Lagrange multiplier, the unconstrained problem can be written as

(1.7) min
λ,u∈BV (Ω)

Eε(λ, u).

Using the Gâteaux-differential we derive the following first-order necessary conditions,
i.e., KKT conditions [38]:

Lλ(u) := −∇ ·
( ∇u√|∇u|2 + ε

)
+ λ(u − z) = 0(1.8a)
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F (u) :=
1

2
(‖u− z‖2L2(Ω) − σ2) = 0(1.8b)

with

(1.9) u ∈ U :=

{
u(x, y) : (x, y) ∈ Ω and

∂u(x, y)

∂�n
= 0 on ∂Ω

}
,

where �n is the unit exterior normal to the boundary ∂Ω.
We remark that many researchers have successfully solved the above model by

fixing λ first. In particular, if λ is given, various effective algorithms can solve the
nonlinear PDEs (1.8a) with the boundary condition from (1.9) [2, 14, 16, 22, 23, 37,
41, 45].

In works of [4, 38, 40], some discussion is given on attempts beyond the generic
method of L-curve methods from inverse formulation to predict an optimal parame-
ter. In general such a solution does not satisfy (1.8b), i.e., the constrained condition
F (u) = 0; this means that the solution of the Euler–Lagrange equation (1.8a) with
the fixed parameter λ is not a solution of the KKT system (1.8). Furthermore, such
a regularization parameter λ balancing the trade-off between a good fit to the data
and a regular solution is difficult to give, and the crucial issue in the unconstrained
regularization (1.6) is how to choose such parameter λ in order to produce a regular-
ized solution u∗ close to the true noise-free solution u, satisfying the KKT system. If
the value λ is too large, then the corresponding solution u∗ is contaminated by noise,
while if too small, u∗ is a poor approximation of u. Much less work has been done
to solve directly the coupled KKT system (1.8); if the system could be solved, the
parameter choice for λ is resolved.

According to the discrepancy principle, a regularization parameter should be cho-
sen so that the corresponding solution u∗ has a residual L2-norm equal to a known σ.
Thus the KKT method provides only one (implicit) way of realizing the discrepancy
principle. There exist some interesting nonlinear scale space methods in multireso-
lution framework [10, 39, 42] for choosing the parameter explicitly. Specifically, the
scale space methods reconstruct an image from an noisy image by a time-continuous
nonlinear diffusion equation, starting with z and gradually smoothing and evolving
it toward the mean value image, while the inverse scale space methods start with
the constant image u(x, 0) = 0 and evolve until the noisy image z is reached as time
t increases. So the crucial point is to know when iterations should be stopped be-
fore convergence; if both methods are stopped at a suitable time t∗ which satisfies
the discrepancy principle ‖u(t∗) − z‖L2 = σ, we may expect that the approximating
noise-free image is obtained, e.g., if the inverse scale space flow is stopped at t∗, then
u(t∗) approaches the noise-free image in the sense of Bregman distance (see [10]).

Our key goal in this paper is to investigate the KKT system and choose effectively
the regularization parameter λ through solving the system. In such a KKT strategy
we shall achieve the discrepancy principle implicitly. Our study will first establish
the monotonicity property of the constrained condition with respect to the multi-
plier parameter, hence making sure that the discrepancy principle seeks the highly
approximation solution of the Lagrange equation (1.8a) for different λ to meet with
the KKT system (1.8) with the boundary condition (1.9). Further, a full multigrid
method with Krylov space acceleration is employed to solve large-size discretization
equations (1.8a).

The rest of the paper is organized as follows. In section 2 we review some meth-
ods for solving the ROF model as an unconstrained problem or as a PDE problem,
and survey how to choose the corresponding regularization parameter. In section 3,
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we build some mathematical theories to iteratively seek the solution of the KKT
system from the constrained image denoising problem (or ROF model) by using sev-
eral theorems, before proposing our multiplier iterative update algorithm. We give
experimental results in section 4. Finally we conclude this work in section 5.

2. Review of existing algorithms. As noted, various ways of solving the ROF
model have been proposed. Below we review a few of them.

2.1. Methods for a given parameter λ. The ROF model may be solved by
three types of approaches: the parabolic approach, the elliptic approach, and the
optimization approach.

The parabolic approach: Time marching method. In 1992, Rudin, Osher,
and Fatemi [40] used this classic parabolic equation with time (the gradient descent
method) to solve the above Euler–Lagrange equation from the constrained TV model,
i.e.,

∂u(·, t)
∂t

= N(u) = ∇ ·
(

∇u(·, t)√|∇u(·, t)|2 + ε

)
− λ(u(·, t)− u(·, 0)) for t > 0,(2.1a)

u(x, y, 0) = z(x, y), (x, y) ∈ Ω, u(., t) ∈ U×R+.(2.1b)

In [37], (2.1) is refined by ∂u(·,t)
∂t = |∇u|N(u). Instead of solving the steady flow

directly, the equations are advanced in time until a steady state solution is achieved.
Because of the stability constraint of the numerical method, the time step Δt

used in the time marching methods shall be restricted, i.e., Courant–Friedrichs–Lewy
(CFL) stability condition: Δt < ch2 and c is the CFL number (explicit methods
generally require c < 1, but implicit methods allow larger time steps); h is the grid
size.

Nevertheless, it is well known that due to the small discretized scale h for high-
accuracy simulation, only very small time step Δt is allowed and leads to slow evolu-
tion toward the steady-state solution.

Lagged diffusivity fixed point iteration. First Newton’s linearization tech-
nique for (1.8a) was also considered by Vogel and Oman [45],

L′
λ(u

n)(un+1 − un) := −∇ ·
(
∇(un+1 − un)√|∇un|2 + ε

)

+ ∇ ·
((∇(un+1 − un)

)T∇un

(
√|∇un|2 + ε)3

∇un

)
+ λ(un+1 − un)

= −Lλ(u
n),

which may be simplified as

λun+1 −∇ ·
(

∇un+1√|∇un|2 + ε

)
+∇ ·

((∇(un+1 − un)
)T∇un

(
√|∇un|2 + ε)3

∇un

)
= λz.

From the numerical results in [45], we can note that the above Newton method is
divergent for even mildly small ε because it has a very small domain of convergence
when ε is small and a very good initial guess should be chosen in order for the method
to converge (also see [25]); note that a homotopy algorithm may be used to accelerate
the Newton method [48].

To alleviate this drawback, Vogel and Oman [45] dropped the highest-order term
in L′

λ(u)δu from differentiating Lλ(u) and proposed the use of an equivalent quasi-



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ITERATIVE MULTIPLIER METHOD FOR TV DENOISING 987

Newton iterative technique to solve the nonlinear equation (1.8a), resulting in the
commonly used lagged diffusivity fixed point algorithm, i.e.,

(2.2) λun+1 −∇ ·
(

∇un+1√|∇un|2 + ε

)
= λz.

A proof of the global convergence of the fixed point algorithm is given in [23], which
gives an estimate for the rate of convergence in terms of the spectral structure of a
preconditioned Hessian.

Primal-dual Newton method. From the above discussion, a main difficulty
in solving (1.8a) by Newton’s method is due to the high nonlinearity when ε is small,
leading to a small domain of convergence, so a good initial guess for Newton’s method
with second-order convergence is necessary (which is practically impossible). To deal
with this high nonlinearity, Chan, Golub, and Mulet [22] proposed a primal-dual
Newton method to reduce the nonlinearity of the objective function before applying a
linearization technique such as Newton’s method. This technique is accomplished by
introducing an additional variable for the flux quantity appearing in the gradient of
the objective function, which can be interpreted as the unit normal to the level sets
of the image function:

(2.3)

{
g(u, ω) := −∇ · ω + λ(u − z) = 0,

f(u, ω) := ω
√

|∇u|2 + ε −∇u = 0.

We can linearize this (u, ω) system (2.3) by Newton’s method,(
λI −∇·

−(I − ω∇uT

|∇u| )∇ |∇u|

)(
δu
δω

)
= −

(
g(u, ω)
f(u, ω)

)
.

From the experimental results in [22], we can know that the new primal-dual method
is globally convergent, whereas the primal Newton method has a small domain of
convergence [25, 17]. We remark that the method can also be used to speed up the
solution of the dual problem of the TV model [18].

Alternating split-Bregman methods. Although the minimization problem of
the ROF model can be solved directly [19, 20], much simpler algorithms can be derived
from introducing intermediate variables, especially for image deblurring problems.
Instead of solving the deblurring problem

min
u

Bε(λ, u) :=

∫
Ω

√
|∇u|2 + ε dxdy +

λ

2

(∫
Ω

|Ku− z|2 dxdy − σ2
)
,

where K is a blur operator, an alternating split-Bregman method can be written as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u = argmin
u

μ

2
‖Ku− z + c‖22 +

λ

2
‖Du− d+ b‖22,

d = argmin
d

‖d‖1 + λ

2
‖d−Du− b‖2,

b = b+ δb(Du− d),

c = c+ δc(Ku− z),

where μ > 0, 0 < δb ≤ 1, and 0 < δc < 2. Here Du = TV (u) or can be any other
regularizer. Even when K = I, this formulation has advantages since, clearly, each
subproblem is much simpler than before [32, 33, 11, 47].
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Duality-based methods. Rather than solving the primal unconstrained mini-
mization problem (1.7), i.e., minu P (u) :=

∫
Ω |∇u| dxdy+ λ

2

∫
Ω |u−z|2 dxdy, with the

definition of the Legendre–Fenchel transform of TV (u): TV ∗(v) = supu〈u, v〉−TV (u),
Zhu, Wright, and Chan [51] have proposed several gradient projection algorithms that
make use of the following dual formulation:

min
p∈C1

0(Ω),|p|�1
D(p) :=

1

2
‖∇ · p+ λz‖22.

Similar derivations of the above dual formulation are presented in [12, 14, 18, 26]. In
particular, a further regularization of p may be added to the formulation.

Multigrid methods. Nonlinear multigrid methods [30, 41, 26] based on the full
approximation scheme and the Krylov space accelerated technique have been proposed
to solve the Euler–Lagrange equation (1.8a), with a smoother using local adapted
Gauss–Seidel relaxation to the linear equation at each fixed point iteration. To apply
them directly to solve (1.7), refer to [19, 20, 16]. The goal of a multigrid method
is to accelerate the convergence of a basic iterative method by global correction,
accomplished by solving recursively a coarse problem [5, 44]; application of multigrid
methods to other related models may be found in [6, 7, 8, 9]. In our numerical
experiments, a multigrid method is used to solve the nonlinear equation (1.8a) due to
its low computational cost.

2.2. Methods for updating the parameter λ. Needless to say, with a fixed
regularization parameter λ, a solution from the above proposed methods to the ROF
model or the nonlinear PDE (1.8a) violates the constrained condition (1.8b), i.e., it
is not a zero point of the KKT system (1.8). Although standard techniques solving
the nonlinear equations do not work well for this kind of mixed differential-integral
system, there exist previous work on ways of updating the parameter λ.

The original ROF model [40] presented a Lagrange multiplier updating technique
which merely multiplies (2.1a) by (u− z) and integrates by parts over Ω. If a steady
state of (1.8a) has been reached, the left side of (2.1a) vanishes. Then the Lagrange
multiplier becomes

(2.4) λ = − 1

σ2

∫
Ω

[(∇u
)T∇(u− z)√|∇u|2 + ε

]
dxdy.

In fact, we note that the solution of system (1.8a) and (2.4) cannot solve the system
(1.8a) and (1.8b); for example, the mean value image satisfies the former but not the
latter.

A better method of updating λ is shown in [34], where it is assumed that the
two-dimensional image u and the two-dimensional TV gradient matrix V = ∇u with
∇ui,j = (∇xui,j ,∇yui,j) of size n×n are converted rowwise to sized n2 vectors. Then
the Lagrange multiplier λ of the constrained optimization problem is computed from
solving minu TVε(u) =

1
n2

∑n
i,j=1

√|∇ui,j |2 + ε with F (u) = 0 leading to the initial

choice of λ = (F (u)−∇uTVε(u))
T∇uF (u)

(∇uF (u))T∇uF (u)
. In fact, the main method of [34, 35] is to solve

the coupled KKT system by a quasi-Newton method with the initial guess for λ from
the above formula; note that Newton-type methods may have convergence difficulties
unless ε is large. This method is also used in [36, 38, 43] to update the Lagrange
multiplier of the KKT system.
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3. Iterative Lagrange multiplier method. Solving the coupled nonlinear
system (1.8) consisting of a differential equation and an integral equation is a difficult
task by using some classical iterative methods, for example, a Newton type lineariza-
tion technique, the gradient descent method with time component, or a fixed point
iteration. Therefore the dilemma is that one needs to solve the coupled KKT system
to obtain a reliable regularization parameter λ (for the discrepancy principle), while
such an effective solution method is hard to find.

We now turn to an alternative way of seeking the solution of this system that is
guaranteed to yield a minimum of the constrained minimization problem (1.4). Our
idea relies on establishing the analytical properties of the underlying functional. Then
a computational procedure becomes apparent. Below we analyze some properties of
the Lagrangian functional Eε(λ, u) from (1.6) (refer to [1, 13] for other derivations
of existence and uniqueness theories of the objective functional) and the constrained
functional F (u) before introducing our proposed method.

3.1. Convexity of the Lagrange functional Eε(λ, u) and solution unique-
ness. First, for a fixed Lagrange multiplier λ0 and all υ ∈ BV (Ω), the functional
Eε(λ0, u) is G-differentiable or Gâteaux-differentiable at any u ∈ BV (Ω) and we de-
note this first-order G-differential in the direction υ by E′

ε(λ0, u)υ:

E′
ε(λ0, u)υ = lim

t→0

Eε(λ0, u+ tυ)− Eε(λ0, u)

t

= lim
t→0

∫
Ω

(
∇(u+ tυ)√|∇(u + tυ)|2 + ε

)T

∇υ + λ0(u − z)υ dxdy(3.1)

=

∫
Ω

[
−∇ ·

(
∇u√|∇u|2 + ε

)
+ λ0(u− z)

]
υ dxdy

≡ 〈Lλ0(u), υ〉,

where the third equality holds due to satisfying the boundary condition ∂u
∂�n = 0 on ∂Ω.

The continuous linear functional E′
ε(λ0, u) or Lλ0(u) is called the G-derivative (of

Eε(λ0, u)) at u(x) ∈ BV (Ω).
Similarly, for any υ ∈ BV (Ω) the function 〈Lλ0(u), υ〉 also is G-differentiable

at any u ∈ BV (Ω) in the direction ω ∈ BV (Ω). Also Eε(λ0, u) is second-order
G-differentiable since the second-order G-derivative can be derived as follows:

E′′
ε (λ0, u)υω = lim

t→0

〈Lλ0(u+ tω), υ〉 − 〈Lλ0(u), υ〉
t

= lim
t→0

∫
Ω

(
∇(u+tω)√
|∇u+tω)|2+ε

− ∇u√
|∇u|2+ε

)T
∇υ + tλ0ωυ

t
dxdy(3.2)

=

∫
Ω

(∇ω)T

(
(∇u)T∇u−∇u(∇u)T

(
√|∇u|2 + ε)3

+
ε

(
√|∇u|2 + ε)3

)
∇υ + λ0ωυ dxdy

≡ Jλ0(u)(υ, ω).

Below we denote the second-order G-differential of objective functional Eε(λ0, u) in
two directions υ and ω by E′′

ε (λ0, u)υω or Jλ0(u)(υ, ω). We know that the eigenvalues

of (∇u)T∇u−∇u(∇u)T are 0 and (∇u)T∇u, so the eigenvalues of ( (∇u)T ∇u−∇u(∇u)T

(
√

|∇u|2+ε)3
+
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ε

(
√

|∇u|2+ε)3
) are positive for all u(x) ∈ BV (Ω). Together with its symmetry, the in-

equality

Jλ0(u)(p, p) � λ0‖p‖2L2(Ω) for any u, p ∈ BV (Ω)

is obtained and the above equality holds when ‖∇p‖2 = 0.
Therefore the basic convexity of the unconstrained optimization problem E(λ0, u)

with the fixed Lagrange multiplier λ0 is established as stated in the following theorem.
Theorem 3.1. If λ0 is a fixed nonnegative constant, then Jλ0(u)(· , ·) is sym-

metric positive semidefinite and E(λ0, ·) is a convex functional with respect to u(x),
where x ∈ Ω. Furthermore, if λ0 > 0, then Jλ0(u)(· , ·) is uniformly positive definite
and E(λ0, ·) is a strictly convex functional with respect to u(x), where x ∈ Ω.

Proof. Since Jλ0(u)(p, p) � λ0‖p‖2L2(Ω) > 0 for all u, p ∈ BV (Ω), p �= 0, and

λ0 > 0, the strict convexity of E(λ0, ·) follows easily from [49, Corollary 42.8]. (Also
see [1, 13] for other derivations of convexity of the objective functional.)

In the following we discuss further properties of the minimization problem for the
Lagrange functional Eε(λ0, u) with a given multiplier λ0, i.e., the relation between
the minimization problem minu Eε(λ0, u) and the equation Lλ0(u) = 0. First we state
a known result.

Theorem 3.2 (see [49, Proposition 42.10]). If f : X → R is a convex G-
differentiable functional on the real Banach space X and f ′(u) is its G-derivative, then

f(u) has a minimum at u ⇔ f ′(u) = 0.

Proof. Refer to [49, Proposition 42.10].
From (3.1), (3.2), and Theorems 3.1 and 3.2, we conclude that E(λ0, u) is a

convex G-differentiable functional on the real Banach space BV (Ω) and E(λ0, u) has
a minimum at u⇔ Lλ0(u) = 0, so the solution of the G-derivative equation Lλ0(u) = 0
is a minimizer of E(λ0, u).

Finally after convexity, the uniqueness of solution can be stated.
Theorem 3.3 (see [49, Theorem 47.C]). Suppose that the following conditions

hold:
(1) BV (Ω) is a convex nonempty subset of the real locally convex space X ;
(2) f : BV (Ω) ⊆ X → R is convex; f(v) is extended to X by setting f(υ) = +∞

for υ /∈ BV (Ω).
Then the structure of the solution set U for minimization problem minu∈BV (Ω) f(u)
has these properties:

(i) U is convex.
(ii) U is closed when f(u) is lower semicontinuous and BV (Ω) is closed.
(iii) Every local minimum of f(u) on BV (Ω) is also a global minimum of f(u) on

BV (Ω).
Consequently, f(u) has at most one minimizer when f(u) is strictly convex on BV (Ω).

Proof. Refer to [49, Theorem 47.C].
According to Theorem 3.3, every local minimum of Eε(λ0, u) on BV (Ω) is also

a global minimum of Eε(λ0, u) on BV (Ω) in the case of Lagrange multiplier λ0 � 0.
Furthermore, if λ0 > 0, Eε(λ0, u) is strictly convex on convex set BV (Ω), so a solution
of Lλ0(u) = 0 is a unique global minimizer of the unconstrained objective functional;
existence and uniqueness theories of the TV problem can be found in [1, 13].

3.2. Monotonicity of the constrained functional F (uλ). A crucial step in
our study is to establish monotonicity of the constrained functional F (uλ), with which
useful algorithms can be derived next.
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Theorem 3.4. Let λ1 and λ2 be nonnegative constants, uλ1 be the solution of
Lλ1(u) = 0, and uλ2 be the solution of Lλ2(u) = 0. Then

(1) Eε(λ1, uλ1) � Eε(λ1, uλ2); (2) Eε(λ2, uλ2) � Eε(λ2, uλ1).

Furthermore, if λ1 < λ2, we have

(3) F (uλ2) � F (uλ1); (4) TVε(uλ1) � TVε(uλ2).

In addition, if 0 < λ1 < λ2, all � can be replaced by <.
Proof. Since uλ1 is the solution of Lλ1(u) = 0 and λ1 � 0, then functional

Eε(λ1, u) is convex and uλ1 is a minimizer of Eε(λ1, u) from Theorem 3.2. According
to Theorem 3.3, uλ1 is also a global minimizer of Eε(λ1, u), so inequality Eε(λ1, uλ1) �
Eε(λ1, uλ2) holds. Similarly (2) also holds.

We rewrite (1) and (2) as the following:

TVε(uλ1) + λ1F (uλ1) � TVε(uλ2) + λ1F (uλ2),

i.e., TVε(uλ1)− TVε(uλ2) � λ1(F (uλ2)− F (uλ1));(3.3)

TVε(uλ2) + λ2F (uλ2) � TVε(uλ1) + λ2F (uλ1),

i.e., TVε(uλ2)− TVε(uλ1) � λ2(F (uλ1)− F (uλ2)).(3.4)

Adding (3.3) to (3.4) leads to F (uλ2) � F (uλ1); adding a multiple λ2 of (3.3) to a
multiple λ1 of (3.4) yields TVε(uλ1) � TVε(uλ2). Thus we have proved (3) and (4).

Indeed if 0 < λ1 < λ2, uλi is the unique global minimizer of the objective func-
tional Eε(λi, u) for i = 1, 2, all inequalities hold strictly.

Since F (u) is continuous on BV (Ω) and uλ is also continuous with respect to λ
(from the implicit function theorem in Banach spaces; refer to [50, Theorem 4B] and
[21]), we infer that F (uλ) is also continuous in λ. Therefore for λ � 0, according to
Theorem 3.4, F (uλ) is strictly monotonous. So it only remains to identify two distinct
points of nonnegative λ at which F (uλ) take opposite signs in order to show that the
solution of (1.8a) can satisfy F (uλ) = 0.

Let U0 := {u ∈ BV (Ω) : Lλ(u) = 0 for all λ � 0}. In order to construct a
sequence {uλi ∈ U0, i = 0, 1, 2, . . .} such that limi→+∞ F (uλi) = 0, we give the
following theorem.

Theorem 3.5. For any given σ such that 0 < σ < ‖z −m(z)‖L2(Ω), where m(z)

is the mean of function z(x) on convex Ω, i.e., m(z) =
∫
Ω
z(x)dx

|Ω| , there exist uλ0(x),
uλ1(x) ∈ U0 such that

F (uλ0(x)) > 0 and F (uλ1(x)) < 0.

Proof. Recall that uλ(x) = argminu{TVε(u) + λ(12‖u − z‖2L2(Ω) − σ2)}. Since

u0(x) = argminu TVε(u) has a constant solution, assuming the initial guess used is
z, we obtain u0 = m(z). Similarly, u∞(x) = argminu(

1
2‖u − z‖2L2(Ω) − σ2) has the

solution z. Hence

lim
λ→0

F (uλ(x)) = F (u0(x)) = F (m(z)) > 0

and

lim
λ→+∞

F (uλ(x)) = F (u+∞(x)) = F (z) < 0,

so there exists an M > 0 such that F (uλ0(x)) > 0 and F (uλ1(x)) < 0, if we take
λ1 > M , uλ0 = m(z) ∈ U0, and uλ1 ∈ U0.
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Alternatively, define a zero mean value image z̄ = z − m(z) and the associated
problem u(λ) = argminu{TVε(u) + λ(12‖u − z̄‖2L2(Ω) − σ2)}. Refer to [10, 21] for

more details.) Since u(0) = 0 and u(+∞) = z̄, for the general z with uλ(x), we have
u0 = 0 +m(z) = m(z) and u+∞ = z̄ +m(z) = z. Then the same argument applies,
i.e., we have F (uλ0(x)) > 0 and F (uλ1(x)) < 0.

The above theorem shows that there exist such nonnegative parameters λ0 and
λ1 such that F (uλ0(x)) > 0 and F (uλ1(x)) < 0. Thus according to continuity and
monotonicity of the constrained function F (uλ) with respect to λ, there exists a
unique λ∗ ∈ (λ0, λ1) such that (λ∗, uλ∗) is the solution of the KKT system (1.8).
Consequently, starting from two such initial values, it is not a hard task to locate the
desired λ∗.

The basic idea of constructing an approximation sequence uλi converging to uλ∗

is the following:
(a) Set λ0 = 0, λ1 = M . Solve the solution uλ1 of (1.8a) by using a multigrid

method.
(b) If F (uλ1) > 0, set λ0 := M , takeM := 2M , and solve recursively the equation

(1.8a) until F (uλ1) < 0. Set λ1 := M .
(c) Take λ2 ∈ (λ0, λ1), obtain u from (1.8a) by a multigrid method, and set

uλ2 := u.
(d) If F (uλ2) < 0, take λ3 ∈ (λ0, λ2); else if F (uλ2) > 0, take λ3 ∈ (λ2, λ1) and

compute uλ3 .
(e) Similar to (d), obtain (λ4, uλ4), (λ5, uλ5), (λ6, uλ6), . . . .

3.3. Relationships of the solutions of constrained and unconstrained
problems. Before we present our algorithm, it remains to connect the solutions of
constrained and unconstrained problems because our idea is to solve the constrained
problem (KKT system) through solving the relatively easier unconstrained problems.

The above sequence gives the solution (λ∗, uλ∗) of the KKT system (1.8) with
the boundary condition (1.9), which is also a stationary point of the unconstrained
optimization problem (1.7). The following theorem shows that such a solution uλ∗ is
also the global minimizer of the constrained optimization problem (1.4).

Theorem 3.6. Suppose that λ∗ > 0 and uλ∗(x) ∈ BV (Ω) is a stationary point of
the Lagrangian functional Eε(λ, u), i.e., solves the unconstrained optimization problem
(1.7). Then the same function uλ∗(x) also solves the constrained problem (1.4).

Proof. For given λ∗ > 0, according to Theorem 3.1, Eε(λ
∗, u) is a strictly G-

differentiable convex functional, uλ∗(x) is the stationary point of Eε(λ
∗, u), and hence

uλ∗(x) is the unique and global minimizer of Eε(λ
∗, u) from Theorems 3.2–3.3, i.e.,

Eε(λ
∗, uλ∗) < Eε(λ

∗, u) or TVε(uλ∗) + λ∗F (uλ∗) < TVε(u) + λ∗F (u),

where u ∈ BV (Ω) and u �= uλ∗ . Since uλ∗ satisfies the constrained condition F (uλ∗) =
0 from (1.8b), the above inequality is equivalent to

TVε(uλ∗) < TVε(u) + λ∗F (u) for all u ∈ BV (Ω) and u �= uλ∗

and

TVε(uλ∗) < TVε(u) for all u ∈ BV (Ω) with F (u) = 0 and u �= uλ∗ .

This means that uλ∗(x) ∈ BV (Ω) minimizes the constrained problem (1.4).

3.4. Algorithm descriptions. We are now ready to state our algorithm, which
is essentially a realization of the intended idea of solving the constrained problem
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Fig. 3.1. Structure of a full multigrid scheme. The left box presents a full multigrid cycle. Red
arrows denote the high-order interpolation operator HRh

2h, a common full multigrid interpolation
for second-order accurate discretizations is cubic interpolation. Black and blue arrows denote the
interpolation and restriction transfer within the multigrid cycle, respectively. After running the full
multigrid cycle, the new multigrid cycle (in red box) beginning the previous approximation solution
is implemented circularly until the stopping criterion is met.

(KKT system) through solving unconstrained problems. Specifically, the goal of our
algorithm is to seek the solution u∗ of the nonlinear equation (1.8a) with different
multipliers λ while examining if the constrained condition (1.8b) is satisfied; the
latter condition is the discrepancy principle.

In order to obtain the solution of the KKT system (1.8) in an indirect way, first
we present a multigrid algorithm to solve the nonlinear equation (1.8a). As in all
efficient multigrid implementations, we use a full multigrid method (also see Algo-
rithm 1 and Figure 3.1) to start from the coarsest grid Ω0 in order to provide a good
initial approximation on the finest grid Ω� through computation and interpolation of
approximations on coarser grids. Each coarse grid solution serves as an initial ap-
proximation for the next finer grid. This process continues until it reaches the finest
level where the solution of the problem is required for the usual multigrid. Typically
for a full multigrid method, a transfer of higher accuracy than the interpolation used
within normal multigrid cycles has to be chosen and then the full multigrid scheme is
the most efficient [44].

Algorithm 1 (full multigrid algorithm). Below our transfer operator HRh
2h is

a high-order interpolation operator and � denotes the grid level number. FAS denotes
a normal full approximation algorithm by Brandt [41, 27, 44, 8], as in Figure 3.1.
Step 1. On level i = 0:

Solve exactly L0
λ(u) = 0 to obtain u0 and set u∗

0 = u0;
Step 2. On level i = 1, 2, . . . , �− 1:

ui := HRh
2hu

∗
i−1;

u∗
i = FAS(i+ 1, ui);

Step 3. On the finest level i = �, set u0 = u∗
�−1.

Iterate on j for IT steps:
uj = FAS(�, uj−1); check stopping criterion;

As indicated, our algorithm will start from two parameters λ0, λ1 and search for
λ∗, where F (λ∗) = 0. Although the bisection method is an obvious choice, it may
not be efficient (depending on the exact profile of F (uλ)) and we found that a com-
bined method of the secant method, the bisection method, and the alternating secant
mean-value marching (ASMM) method is much better, as shown in Algorithm 2 for
the multiplier parameter-update technique. Here the secant method, the bisection
method, and the ASMM method are employed alternatively to seek the zero of the
function F (uλ).

Our idea of acceleration aims to overcome slow convergence when two consecutive
iterates are too close to each other. Suppose F̂l and F̂r are function values of the left
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λ

F (uλ)

F̂l(Fl)

F̂r
Fr

λ̂l(λl)

λ̂rλr

λk

λk =
λl + λr

2

(a) Case 1: Bisection method

λ

F (uλ)

F̂l

F̂r(Fr)

Fl

λ̂l

λ̂r(λr)

λl

λk

λk =
λl|Fr| + λr|Fl|

|Fl| + |Fr|

(b) Case 2: Secant method

λ

F (uλ)

F̂l(Fl)

F̂r

λ̂rλ̂l(λl) λr

Fr

λ̄kλ̃k

λk

λk =
λ̄k + λ̃k

2

(c) Case 3: ASMM method

Fig. 3.2. Partial cases in iterative multiplier update scheme, where λ̄k = λr − τrηr
τr+ηr

(λ̂r − λr)

and λ̃k = λr − ηr
1−ηr

(λ̂r − λr) with ηr =
|Fr|
|F̂r| and τr =

|F̂l|
|F̂r| .

and right of a zero point in the previous iteration, while Fl and Fr are function
values of the left and right of the zero point at the current iteration, for example, the
current iteration may be obtained by Fl = F (uλ2) if F (uλ2) > 0 and Fr = F (uλ2)
when F (uλ2) < 0, in the bisection method from the previous iteration F̂l = F (uλ0)
and F̂r = F (uλ1). In general, since each in a pair of values Fl, Fr has opposite signs,
the case of |Fa|/|Fb| � |F̂a|/|F̂b| > τ0 and |Fb|/|F̂b| > 0.80 (where a ∈ A = {r, l},
b ∈ A \ a) is naturally suited to the bisection method. Otherwise the secant and the
ASMM method are better, as given in the Algorithm 2, where we take 0.8 as close
enough to 1 and set τ0 > 1. We also illustrate three cases of |F̂l|

|F̂r| > τ0 in Figure 3.2,
where we take τ0 = 2.

Algorithm 2 (a robust parameter choice method). Given an integer k, two

suitable parameters λ̂l and λ̂r, the corresponding function values F̂l and F̂r in the
previous iteration, two parameters λl and λr, the corresponding function values Fl

and Fr in the current iteration, and some τ0 > 1:

Step 1. If k = 2, Secant λk = λ̂l|F̂r|+λ̂r|F̂l|
|F̂l|+|F̂r| and finish the algorithm;

Step 2. For k > 2, do the following
− If the current ratio is similar to the previous:

τr = |F̂l|
|F̂r | > τ0 & |Fl|

|Fr| �
|F̂l|
|F̂r| ,

◦ if two current end values are almost equal ηr = |Fr |
|F̂r | > 0.80,

λk = (λl + λr)/2; (Bisection method)
◦ else
λk = λr − 1

2 (
τrηr

τr+ηr
+ ηr

1−ηr
)(λ̂r − λr); (ASMM method)

◦ end
− elseif the current reciprocal ratio is similar to the previous:

τl =
|F̂r|
|F̂l| > τ0 & |Fr |

|Fl| �
|F̂r|
|F̂l| ,

◦ if two current end values are almost equal ηl =
|Fl|
|F̂l| > 0.80,

λk = (λl + λr)/2; (Bisection method)
◦ else
λk = λl +

1
2 (

τlηl

τl+ηl
+ ηl

1−ηl
)(λl − λ̂l); (ASMM method)

◦ end
− else

λk = λl|Fr|+λr |Fl|
|Fl|+|Fr| ; (Secant method)

− End
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To demonstrate how this parameter algorithm can be superior, we consider the
following generic example of seeking the zero for F (x) = 10000 − x3 in [0, 101].
First the secant method is not yet convergent to the solution after 100 iterations and
the bisection method reaches the residual F (x) = −4.23e−4 after 27 iterations when
|xk − xk−1| < 1.0e−6 is quite small, while our ASMM scheme converges to solution
x = 21.5444 with a much smaller residual F (x) = 1.4188e−10 after only 13 iterations.

Finally we are ready to state our overall algorithm. In accordance with the above
theoretical results, we assume η(x, y) is zero mean value noise with variance σ2 (i.e.,
m(u) = m(z)), and the condition 0 < σ < ‖z − m(z)‖L2(Ω) throughout the paper.
Then F (m(z)) > 0 can be assured when λ = 0 is chosen and m(z) is the solution
of the ROF equation (1.8a). Thus the first initial λ satisfying F (uλ) > 0 is λ0 = 0,
while for the second initial λ satisfying F (uλ) < 0 we pick some large value M and
set λ1 = M . The final Algorithm 3 below uses the above full multigrid Algorithm 1
and the parameter choice Algorithm 2.

Algorithm 3 (iterative multiplier method). Given two initial parameters λ0 = 0
and λ1 = M > 0, update λ0, λ1 (with respective solutions uλ0 and uλ1 of (1.8a) are
such that F (uλ0) > 0 and F (uλ1) < 0). Let Fl = F (uλ0), Fr = F (uλ1), λl = λ0,
λr = λ1, k = 2;
Step 1. Obtain λk by Algorithm 2;
Step 2. Set F̂l = Fl and F̂r = Fr; λ̂l = λl and λ̂r = λr; Solve the equation (1.8a)

to obtain the unique solution uλk
by using the full multigrid method ( see

Algorithm 1 or Figure 3.1);
− If ‖F (uλk

)‖ < η0, then
uλk

solves the constrained optimization problem (1.4) and return solu-
tion u∗ := uλk

;
− else if F (uλk

) � −η0
set Fr = F (uλk

), λr = λk;
− else if F (uλk

) � η0
set Fl = F (uλk

), λl = λk;
− end

Step 3. Check the step length;
− If |λk − λk−1| < η1,

stop and return u∗ := uλk
;

− else
k := k + 1, go back to Step 1;

− end
Thus we have presented an algorithm for getting a solution to the KKT system

without directly solving it.

4. Numerical experiments. This section presents some numerical results from
experiments using our iterative multiplier Algorithm 3 for synthetic and real images.
Four sets of noisy data will be used in our tests, called Example 1, 2, 3, 4, respectively,
and an initial guess is the noisy image z(x, y). The full multigrid process solving the
diffusion equation (1.8a) is stopped after achieving a relative residual of 10−4 or
relative error of 10−4 or 40 multigrid cycles, and the smoothing parameter ε = 1.0e−2

(except for comparisons) is fixed. Finally the tests for the Lagrange multiplier λ
will be finished in achieving a constrained function residual of TOL = 10−2(i.e.,
F (uλ) < TOL).

Example 1. First, we test the performance of Algorithm 3 for the UoL binary
noisy image in Figure 4.1. The experiment is carried out on a grayscale image with
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(a) True image (b) Noise image z (c) Denoise image u

Fig. 4.1. UoL binary image denoising result. From left to right: the original image, the noisy
image with a zero mean Gaussian random noise of variance σ2 = ( 100

255
)2 × 5122( or psnr = 8.13),

where psnr = 10 log10
nm(max u)2

‖u−u∗‖2
F

is the peak signal-to-noise ratio and u∗ is an approximation to a

noise-free image u, and the denoised image( or psnr = 25.81) of constrained optimization problem
(1.8) by our iterative method.

512×512 pixels and range [0, 1] to which zero mean value Gaussian random noise with
variance σ2 = (100255 )

2 × 5122. Let uλ0 = m(u) = m(z) and uλ1 be the solutions of the
diffusion equation (1.8a) with multiplier λ0 = 0 and fixed λ1 = 10000 (deliberately
set quite large, unlike in Algorithm 3, where we set M = 1000 and adaptively choose
λ1), respectively, in these cases that the constrained functions F (uλ0) = 53245.42 and
F (uλ1) = −36798.63 are examined. Because of continuity of F (uλ) with respect to λ,
its unique zero point λ∗ is achieved in interval (λ0, λ1) from our Algorithm 2.

We show this test in Figure 4.1. The original and noisy images are displayed at
the left and the middle of Figure 4.1, λ∗ = 697.04 is detected to reduce the constrained
function F (uλ∗) to −0.0075, and the solution image uλ∗ is depicted on the right of
Figure 4.1.

To intuitively describe the denoising ability, we present noisy image surface z(x, y),
regularization solution image surface u∗(x, y), and curves u∗(x0, ·) along the y-direction
in Figure 4.2. Especially, the bottom left shows the result of x0 = 256

512 in the y-direction
with a blue curve denoting the noisy curve z(0.5, ·), a red denoting the true curve
u(0.5, ·), and a green one giving the solution u∗(0.5, ·). Similarly, the bottom right
presents the comparison of three curves when x0 is 180

512 .
Example 2. Second, we compare the performance of our iterative Lagrange

method (Algorithm 3) with Landi’s Lagrange method in [35]. A texture image with
256 × 256 pixels in range [0, 1] and zero mean value Gaussian random noise with
variance σ2 = ( 50

255 )
2 × 2562 is tested. Lagrange multipliers λ∗ and solutions u∗ are

obtained by our iterative Lagrange method and Landi’s Lagrange method in this ex-
ample, and the results are presented in Figure 4.3. Let ufmean = m(u) = m(z) be the
solution of the diffusion equation (1.8a) with multiplier λ0 = 0, and λ1 = M = 1000.
The noise-free image and noisy image are respectively displayed at the top of Figure
4.3. Figure 4.3(c) presents a convergent restoration result using our Algorithm 3 af-
ter implementing six iterations for a fixed smoothing parameter ε = 1.0; the optimal
Lagrange multiplier λ∗ = 1196.62 is detected. In contrast, with the Landi Lagrange
method, Figure 4.3(d) displays a convergent denoised image after 249 iterations, and
λ∗ = 1175.18 is obtained. With ε = 1.0, we note that both a Newton-type method
and a multigrid method solve the diffusion equation with good performance in this
case. However, with ε = 0.01 (i.e., increased nonlinearity), Newton-type methods such
as Landi’s Lagrange method may have convergence difficulties; Figure 4.3(f) presents
a bad result in the case of solving the KKT system using Landi’s Lagrange method
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Fig. 4.2. Surface and curve figures of results in Figure 4.1. From left to right (top row): noise
image surface, restoration image surface. On the bottom row: superimposition of the noisy curve
z(x0, ·), the true curve u(x0, ·), and the restored curve u∗(x0, ·) for x0 = 256

512
along the y-direction

(left) and the same curves at x0 = 180
512

(right). Blue curve: noise data; red curve: true data; green
curve: restoration data.

(a) True image (b) Noisy image (σ = 50
255

×256) (c) Our method (ε = 1)

(d) Landi’s method (ε = 1) (e) Our method (ε = 0.01) (f) Landi’s method (ε = 0.01)

Fig. 4.3. Comparison of our iterative Lagrange multiplier method and Landi’s Lagrange method.
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(a) Comparison of constraint functions
F (u).
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(b) Comparison of the residuals of objective
functions.

Fig. 4.4. Comparison of the relative residuals of the Lagrange equation Lλ(u) and the constraint
functional F (u).

Table 4.1

Comparison of our method and Landi’s method with different smoothing parameter ε for a noise
image with variance σ2 = ( 50

255
)2 × 2562(or psnr = 14.15) in Figure 4.3(b).

Iterative multiplier Landi’s method
ε λ∗ O-It I-It psnr λ∗ O-It psnr

100 1196.62 4 3-3/3-3-3-3 22.36 1175.18 249 22.32
10−1 1238.72 4 4-4/4-4-4-4 22.55 1217.18 329 22.51
10−2 1254.12 4 10-5/5-5-5-5 22.61 178.97 >3000 12.27
10−3 1259.15 4 40-5/12-12-12-12 22.63 4.08 >3000 10.37
10−4 1261.21 4 40-5/40-40-40-40 22.64 <1 >3000 6.76

after 100 iterations; however, our Algorithm 3 still gives an excellent denoised image
(see Figure 4.3(e)).

We also compare the relative residual history and the constraint functional F (u)
history of the two methods in Figure 4.4. Here we note that our iterative Lagrange
multiplier method solves accurately the diffusion equation in each iteration (small
relative residual) and can rapidly reduce the modulus of the objective function (a few
iterations) with less oscillations.

Performance comparisons of our method and Landi’s method for the different
smoothing parameter ε are shown in Table 4.1 by finding the best regularization
parameter λ∗ and the corresponding psnr value of denoised images. We also report
the numbers of iterations used by both methods in the third, fourth, and seventh
columns. The first O-It denotes the numbers of iterations finding the optimal value
λ∗ in a feasible interval (λ0, λ1), and I-It denotes the number of multigrid cycles in
the corresponding outer iterations (while numbers before / denote multigrid cycles
used in seeking the feasible interval). The second O-It denotes the numbers of the
Newton iterations in Landi’s method. (The cases of convergence difficulties are given
in boldface, where λ and psnr are shown after achieving 3000 iterations.)

Example 3. In the third example we demonstrate the robust process of Algo-
rithm 3 for dealing with a larger resolution. A grayscale image with 512× 512 pixels
and zero mean value Gaussian random noise with variance σ2 = ( 50

255 )
2 × 5122 is

tested, and we show the obtained parameter sequence λk converging to the Lagrange
multiplier λ∗ and solution paths {uk} are followed in this example. Let ufmean =
m(u) = m(z) be the solution of the diffusion equation (1.8a) with multiplier λ1 = 0,
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Fig. 4.5. Camera image denoising result. From left to right and then top to bottom: the original
image, the noisy image with a zero mean Gaussian random noise of variance σ2 = ( 50

255
)2×5122( or

psnr = 14.30), and eight restoration images: mean image by setting λ = 0, the denoised image from
setting λ = M = 1000, and the denoised image sequence at multiplier λk(k = 1, . . . , 6); the psnr of
the final image is 27.17.

Table 4.2

Parameter choice λk following.

k 1 2 3 4 5 6
λk 2000 3000 2056.57 2069.22 2070.58 2070.65
uk u1 u2 u3 u4 u5 u6

F (uλk
) 41.530 −692.598 8.300 0.844 0.043 0.001

and set λ2 = M = 1000 initially. In this case at the initial step, the constrained
functions are F (ufmean) = 25561.225, F (u1000) = 777.251, F (u2000) = 41.530, and
F (u3000) = −692.598. Because of the continuity of F (uλ) with respect to λ, its unique
zero point λ∗ = 2070.65 is achieved in interval (λ1, λ2) from our Algorithm 2.

We show in Figure 4.5 how efficiently our iterative multiplier method restores
such a real image. Here only a few iterations are necessary to obtain the solution
(u∗(x, y), λ∗) of the KKT system (1.8), but other common penalty methods with
fixed λ are not satisfactory in solving this coupled KKT system. The path of Lagrange
multipliers λk is shown in Table 4.2 using Algorithm 2, where uλk

is the solution of
the diffusion equation (1.8a) at λ = λk.

Here we observe that the sequence of approximations of our iterative scheme con-
verges to the limit λ∗. Thus the use of our iterative multiplier approach is reasonable
from both the numerical and the theoretical point of view.

Example 4. The fourth example illustrates the capability of Algorithm 3 in
adaptively dealing with different noisy variance σ2. The sets of noisy image z(x, y)
with 512× 512 pixels and range [0, 1] are presented in the first row of Figure 4.6 with
a zero mean Gaussian random noise of variance, respectively, σ2

1 = ( 20
255 )

2 × 5122,

σ2
2 = ( 40

255 )
2 × 5122, σ2

3 = ( 60
255 )

2 × 5122, σ2
4 = ( 80

255 )
2 × 5122, and σ2

5 = (100255 )
2 × 5122

from left to right. We report the associated visual results for different images with
different σ2 in the second row of Figure 4.6. For these images from left to right,
different optimal Lagrange multipliers are detected from Algorithm 3 and are collected
as follows: λ∗

1 = 5682.81, λ∗
2 = 2521.23, λ∗

3 = 1564.42, λ∗
4 = 1117.23, λ∗

5 = 863.31.
These multipliers also show that higher variance σ2 requires smaller parameter λ to
solve the KKT system (as expected). The key advantage of our algorithm lies in its
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Fig. 4.6. Numerical results of Lena test image with different variance σ2. From left to right
on the first row: noise image of variance, respectively, σ2

1 = ( 20
255

)2 × 5122( or psnr = 21.87),

σ2
2 = ( 40

255
)2 × 5122( or psnr = 15.85), σ2

3 = ( 60
255

)2 × 5122( or psnr = 12.33), σ2
4 = ( 80

255
)2 × 5122( or

psnr = 9.83), and σ2
5 = ( 100

255
)2 × 5122( or psnr = 7.89). From left to right on the second row: the

associated restoration results and corresponding psnrs : 29.35, 26.50, 24.98, 23.95, 23.16.

(a) True image (b) Noise image z (c) Denoise image u

Fig. 4.7. Binary text image denoising result. From left to right: the original image, the noisy
image with a zero mean Gaussian random noise of variance σ2 = ( 90

255
)2 × 5122( or psnr = 9.05),

and the denoised image( or psnr = 21.13) of constrained optimization problem (1.8) by our iterative
method.

ability of adaptive parameter choice for different image sizes and different levels of
noise, in contrast to many common TV methods requiring a given λ by users; often
it is difficult to provide a good value due to the level of noise and image scale even
with many tests.

Finally in this section, we use two real images to illustrate the quality of restora-
tion by our new solution method. Figure 4.7 shows an experiment for a binary
text image with 512 × 512 size and zero mean Gaussian random noise of variance
σ2 = ( 90

255 )
2× 5122, where λ∗ = 1313.80 is found after four iterations when M = 1000

in Algorithm 3. Figure 4.8 shows the result for an aircraft image with 512× 512 size
and zero mean Gaussian random noise of variance σ2 = ( 80

255 )
2 × 5122. These two

experiments again demonstrate that our method can restore images quite effectively
(in quality) and efficiently (in iterations).
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(a) True image (b) Noise image z (c) Denoise image u

Fig. 4.8. Aircraft natural image denoising result. From left to right: the original image,
the noisy image with a zero mean Gaussian random noise of variance σ2 = ( 80

255
)2 × 5122( or

psnr = 10.16), and the denoised image ( or psnr = 25.01) of constrained optimization problem (1.8)
by our iterative method. The Lagrange multiplier detected is λ∗ = 1062.23.

5. Conclusions. In this paper we presented an efficient iterative Lagrange mul-
tiplier method to solve the KKT system for a constrained TV image denoising problem
(ROF model), the full multigrid scheme with Krylov space acceleration is employed to
improve the computational performance of the nonlinear diffusion equation. The main
advantage of our algorithm is its ability of adaptive multiplier choice for any image
size and level of noise to obtain an accurate solution of the KKT system. In contrast,
many common methods for ROF require a given λ by the user, which is difficult to
provide and can dramatically influence the restoration result. From the theoretical
point of view, the novelty of our new algorithm comes from analyzing the convexity of
the objective function and uniqueness condition of the solutions, the transfer between
the constrained and unconstrained optimization problem; with these, we are able to
propose an iterative multiplier scheme through solving unconstrained optimization
problems iteratively to find an effective solution of the KKT system without having
to solve it directly. Numerical results show that this resulting scheme can automati-
cally deal with different synthetic and natural images, different image resolutions, and
different noise levels. Future work will consider generalization of this work to other
denoising models [15, 8].

Acknowledgment. The authors thank the anonymous reviewers for their in-
sightful comments, which greatly improved this paper.
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