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Abstract

We first discuss a class of high order piecewise collocation methods for solving the boundary

integral reformulation of the exterior Helmholtz equation in three dimensions, and then develop

some sparse preconditioners for this high order case. This research has improved on previous

work on using the collocation method based on piecewise constants, arising from discretization of

a hyper-singular integral operator. We present some preliminary results.

1 Introduction

In this paper we develop high order collocation methods and suitable preconditioners for the boundary

integral formulation of the three dimensional Helmholtz equation in an infinite domain. Such an

equation arises from modelling time harmonic acoustic radiation or scattering by a three dimensional

structure immersed in an infinite homogeneous acoustic medium [2].

For Neumann’s boundary condition, we adopt the Burton and Miller reformulation method [3] for

obtaining an integral equation which has a unique solution for all frequencies (including resonance).
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This is a hyper-singular formulation. There have been several papers on developing suitable numerical

schemes for this formulation:

1. In [2] and many references therein, the piecewise constant collocation method was used for

the Helmholtz equation. Chen and Harris [6] considered effective preconditioners for iterative

solution with this collocation method.

2. Using finite part integration (i.e. ignoring hyper-singularities), Harris [10] considered a high or-

der collocation method for the Helmholtz equation in the axisymmetric boundary case. Similar

work for Laplace equation were also considered by [14, 15].

3. Also for the Laplace equation, several papers have discussed the high order Galerkin method.

Both Giroire and Nedelec [8] and Hackbusch [12] use a method for transforming the hyper-

singular integral appearing in the boundary integral formulation of Laplace’s equation into one

which is at worst weakly singular. However, in neither case do they present any numerical

results of the formulation and the analysis was not extended to include the Helmholtz problem.

4. Recently, for the exterior Helmholtz equation, Harris and Chen [11] developed the high order

Galerkin formulation by reformulating to weakly-singular integrals and considered the associ-

ated iterative solution while [1] considered also a high order Galerkin method but they use

finite part integration.

This paper continues the work of Harris [10] for the three dimensional axisymmetric boundary case

and generalises it to fully three dimensional case. We have also generalised our previous work [6]

on sparse preconditioners based on piecewise constant elements to this high order case. It should

be remarked that it will be of interest to consider how to develop a hybrid high order Galerkin-

collocation method for this problem following the idea in [9]. However our results on high order

methods as well as preconditioning might be directly applied to the efficient Fast Multipole Method.

Numerical experiments confirm that our proposed collocation methods are accurate and the iterative

solution techniques are efficient.
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2 BIM Formulation and the collocation method

Let D+ denote the unbounded region exterior to some structure with surface S which is filled with

an acoustic medium. Consider the problem of solving the Helmholtz equation

∇2φ(p) + k2φ(p) = 0, p ∈ D+ ∪ S (1)

in some unbounded three dimensional region D+ exterior to a closed surface S, where k > 0 is

the wavenumber, subject to a Neumann boundary condition on S and the Sommerfeld radiation

condition limr→∞ r
(

∂φ
∂r − ikφ

)
= 0.

A simple application of Green’s second theorem leads to

∫

S
φ(q)

∂Gk(p, q)
∂nq

−Gk(p, q)
∂φ(q)
∂nq

dSq =





1
2φ(p) p ∈ S

φ(p) p ∈ D+

(2)

where Gk(p, q) =
eik|p−q|

4π|p− q| is the free-space Green’s function, or fundamental solution, for Helmholtz

equation and nq is the unit outward normal to S at q. If the normal derivative of the acoustic field

is given on the surface S then (3) for p ∈ S gives a Fredholm integral equation of the second kind

which can be solved for the surface pressure φ. The acoustic pressure can then be computed at

any point in D+ using (3). However, it is well known that (3) does not possess a unique solution

for certain values of the wavenumber, called characteristic wavenumbers. This is a manifestation of

the integral equation formulation as it can be shown that the underlying differential problem has a

unique solution for all real and positive values of k [3].

The Burton and Miller method [3] for overcoming the non-uniqueness problem consists of differenti-

ating (3) along the normal at p to give
∫

S
φ(q)

∂2Gk(p, q)
∂np∂nq

− ∂Gk(p, q)
∂np

∂φ(q)
∂nq

dSq =
1
2

∂φ(p)
∂np

(3)

and then taking a linear combination of (3) and (5) in the form

−1
2
φ(p) +

∫

S
φ(q)

(
∂Gk(p, q)

∂nq
+ α

∂2Gk(p, q)
∂np∂nq

)
dSq =

α

2
∂φ(p)
∂np

+
∫

S

∂φ(q)
∂nq

(
Gk(p, q) + α

∂Gk(p, q)
∂np

)
dSq

(4)
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where α is a coupling constant. It can be shown that provided that the imaginary part of α is

non-zero then (6) has a unique solution for all real and positive k. However, this formulation has

introduced the integral operator with kernel function ∂2Gk(p,q)
∂np∂nq

which contains a 1
r3 singularity and

hence cannot be integrated in the usual way. Here we shall refer to this operator as the hyper-singular

operator. At this point we note that all the remaining integral operators have kernel functions which

are at worst weakly singular and so can be evaluated using an appropriate quadrature rule.

As discussed, previous work for the collocation approach was mainly based on the use of piecewise

constants. To use high order elements, we have to consider how to overcome the problem of integrating

the above hyper-singular operator.

We first review how to compute a finite part integral. Consider the problem of evaluating an integral

of the form for a suitably smooth function f(s)

∫ b

a

f(s)
(s− a)2

ds. (5)

If F (s) is the anti-derivative of f(s)
(s−a)2

then the finite part of (5) is defined as F (b). In order to

approximate (5) we need to construct a quadrature rule of the form

∫ b

a

f(s)
(s− a)2

ds =
m∑

j=1

wjf(sj). (6)

The simplest way of doing this is to use the method of undetermined coefficients, where the quadrature

points s1, s2, . . . , sm are assigned values and then (6) is made exact for f(s) = (s−a)i, i = 0, 1, . . . , m−
1. The resulting equations can be written in matrix form as Aw = g where

Aij = (sj − a)i−1 and gi =
∫ b

a
(s− a)i−3 ds, 1 ≤ i, j ≤ m, (7)

and, to compute gi for i = 1, 2, we can define the following finite part integrals

∫ b

a

1
(s− a)2

ds = − 1
b− a

and
∫ b

a

1
s− a

ds = ln(b− a). (8)

Then to use finite part integration, one way of interpreting the hyper-singular operator is finding

out an appropriate change of variables so that the interested integral is effectively reduced to one
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dimensional integral with a hyper-singular integrand and the singularity located at an end point.

Suppose that the surface S is approximated by N non-overlapping triangular quadratic surface

elements S1, S2, . . . , SN . If pi, i = 1, . . . 6, denote the position vectors of the six nodes used to

define a given element, then that element can be mapped into a reference element in the (u, v) plane

p(u, v) =
6∑

j=1

ψj(u, v)pj 0 ≤ u ≤ 1, 0 ≤ v ≤ 1− u. (9)

Now suppose that the singular point corresponds to the point (u1, v1) in the (u, v) plane. The

reference element is divided into three triangular sub-elements by connecting the point (u1, v1) to

each of the vertices of the reference triangle. We need to decide on a new coordinate transform in

which the singularity is only present in one variable. Since the singularity is in the radial direction

(away from point (u1, v1)), a suitable transform must be polar like.

Within each sub-element we now propose the following transformation

u(s, t) = (1− s)u1 + stu2 + s(1− t)u3

v(s, t) = (1− s)v1 + stv2 + s(1− t)v3





0 ≤ s, t ≤ 1 (10)

where (u2, v2) and (u3, v3) are the other vertices of the current sub-triangle. Now clearly the only

way for (u(s, t), v(s, t)) = (u1, v1) is for s = 0 as these are bi-linear functions of s and t. Further,

the mapping (9) is bijective as its Jacobian is non-zero for all (u, v) of interest. Hence the only way

that p can equal the singular point is if s = 0. After some manipulation it is possible to show that

r(s, t) = |p(s, t)− q| = sr̃(s, t) where r̃(s, t) 6= 0 for 0 ≤ s, t ≤ 1. The Jacobian of the transformations

(9) and (10) can be written as

J = s
√

D2
1 + D2

2 + D2
3 |(u2 − u1)(v3 − v1)− (u3 − u1)(v2 − v1)| = Jss (11)

where

D1 =

∣∣∣∣∣∣∣

∂y
∂u

∂z
∂v

∂y
∂v

∂z
∂u

∣∣∣∣∣∣∣
D2 =

∣∣∣∣∣∣∣

∂z
∂u

∂x
∂v

∂z
∂v

∂x
∂u

∣∣∣∣∣∣∣
D3 =

∣∣∣∣∣∣∣

∂x
∂u

∂y
∂v

∂x
∂v

∂y
∂u

∣∣∣∣∣∣∣
(12)

Hence, denoting Se the current sub-element, we can write

∫

Se

f(q)
r3

dS =
∫ 1

0

1
s2

[∫ 1

0

f(q(u(s, t), v(s, t)))
(r̃(s, t))3

Js dt

]
ds. (13)
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We note that the inner integration (with respect to t) is non-singular and can be approximated by

an appropriate quadrature rule. However, the outer integral needs to be interpretated as a Hadamad

finite part in a (desirably) single variable s. Thus equation (4) is tractable.

3 Solution of the dense linear system

Denote the dense linear system resulting from discretizing (4), i.e. Aφ = f , by Ax = b. We seek

suitable a preconditioning matrix P−1 such that the following system AP−1y = b can be solved

efficiently by iterative methods (with either P or P−1 sparse), where x = P−1y. For unsymmetric

conjugate gradient solvers, fast convergence is often seen with a clustering distribution of the eigen-

values and singular values [16]. As in [6], using the operator splitting idea [4], we hope to split the

operator A as A = D+ C by domain decomposition such that D is a suitable bounded operator and

C is a compact operator [6]. To proceed, as in [6], we use the surface domain partition S =
⋃N

j=1 Sj

to decompose the operator

A =




A1,1 A1,2 A1,3 · · · A1,N

A2,1 A2,2 A2,3 · · · A2,N

A3,1 A3,2 A3,3 · · · A3,N

...
...

... · · · ...

AN,1 AN,2 AN,3 · · · AN,N




(14)

where in element Si operator Ai,` is the restriction of A over surface S`.

We shall choose a bounded operator splitting D in order for it to give rise to a sparse matrix D

on discretisation. Then the new operator D−1A = I + D−1C (similarly AD−1) will be a compact

perturbation of the identity operator because a product of a bounded operator with a compact

operator is still compact. Since compact operators have all eigenvalues clustered at most at point 0,

eigenvalues of operator D−1A will cluster at 1. Furthermore eigenvalues of its normal operator also

cluster at 1 because D−1A(D−1A)∗ = I +D−1C + C∗D−∗ +D−1CC∗D−∗.

The properties of these continuous operators are inherited by the discrete operators if a consistent
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discretization scheme such as collocation is used. On discretization, with P = D, the preconditioned

system AP−1y = b has a new matrix with clustering eigenvalues at 1. Moreover, the singular values

and the eigenvalues of the normal of this new matrix AP−1 are also clustered at 1. Thus conjugate

gradient methods will be expected to exhibit fast convergence. This differs from the idea of a bounded

condition number which may not describe the convergence e.g. although matrix A with (A)ij = 1

for i ≤ j (0 elsewhere) has a single eigenvalue λ(A) = 1 but most iterative solvers will not converge

since λ(A∗A) has no desirable pattern.

Based on previous 3D work [6] with piecewise constants and 2D work [4], we shall consider in this

study two operator splitting type preconditioners: (I) the element based block diagonal preconditioner

I; (II) the edge based block non-diagonal preconditioner II. Refer to Fig. 1.

4 Numerical Results

The collocation method described in Section 2 and the iterative solution methods described in Section

3 have been applied to a number of test problems, from which a small sample is reported here. In

each case the surface was approximated by six-noded quadratic triangular elements and both the

surface pressure and its normal derivative were interpolated using the same quadratic basis functions

(isoparametric elements). The surface data was generated by placing a number of point sources inside

the surface and using these to compute ∂φ
∂n on the surface. The solution φ is simply that due to the

point sources. The individual test problems considered are outlined below

(1). A unit sphere with point sources at (0, 0, 0.5) and (0.25, 0.25, 0.25) with strengths 2+3i

and 4− i respectively.

(2). A ‘peanut’ shaped surface defined by

x =

√
cos 2θ +

√
1.5− sin2 2θ sin θ cos γ, z =

√
cos 2θ +

√
1.5− sin2 2θ cos θ,

y =

√
cos 2θ +

√
1.5− sin2 2θ sin θ sin γ, (0 ≤ θ ≤ π, 0 ≤ γ < 2π),
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with point sources at (0.2, 0 , 1) and (0, 0.2, -0.75) with strength 2 + 3i and 4− i respectively.

(3). A cylinder of length 0.537 and radius 0.2685 with point sources at (0, 0, 0.15) and (0.25,

0.25, 0.25) with strengths 2 + 3i and 4− i respectively.

Note that the second test problem has a non-convex surface, and that the third test problem has a

non-smooth surface in the sense that it does not possess a unique normal at every point. The measure

of the error is the usual relative L2 error, defined by E = ||φ−φ̃||2
||φ||2 where ||φ||2 =

√∫
S |φ(q)|2 dSq and

φ and φ̃ denote the exact and approximate solution respectively. In the following experiments a mesh

with ne = 576 elements is used which yields linear systems of size n = 1728, 3456 respectively for

linear and quadratic elements.

For the range of values of k considered here the relative errors in the computed solution ranged

from 0.3% (example 1) to 1% (examples 2 and 3). The larger error is probably due to the special

geometries which may require more specialised treatment than that given here.

The results of using both preconditioners with the GMRES(25) method are given in Table 1. Here the

columns headed Σ gives the number of iterations and those headed t/td gives the CPU time t relative

to the time td needed to carry out a full LU decomposition on the matrix. The stopping criterion is

based on the relative residule being less than 10−8. It is clear that both iterative methods are offering a

considerable time-saving over the LU decomposition method, taking less than 1/10 of the time needed

for the LU decomposition. Other GMRES methods, such as GMRES(5) and GMRES(40) were tried,

but offered no significant increase in performance. Although the preconditioners constructed here

are for the hyper-singular integral equation on a smooth convex surface, these results suggest that

they are equally effective when applied to problems involving non-convex surfaces and surfaces with

geometric singularities.

In other experiments, we have observed that the cases of no preconditioning or of using a simple

diagonal preconditioner lead to no convergence of the iterative solver. This is quite different from

the piecewise constant case, as considered in [6].

Acknowledgement. The authors wish to thank the London Mathematical Society for the award of

a small collaborative grant (Ref: LMS 4814), supporting this work.
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Figure 1: Illustration of Preconditioners I (© nodes) and II (• and © nodes) for piecewise linear

elements (left plot) and piecewise quadratic elements (right plot).
Edge based linear scheme Edge based quadratic scheme

Table 1: The number of total GMRES iterations Σ and relative CPU time t/td with preconditioners

I and II for Linear case: n = 1728 and Quadratic case: n = 3456.

SPHERE PEANUT CYLINDER

Linear ΣI tI/td ΣII tII/td ΣI tI/td ΣII tII/td ΣI tI/td ΣII tII/td

k = 1 14 0.03 13 0.03 30 0.07 19 0.05 21 0.05 19 0.05

k = 2 16 0.04 15 0.04 33 0.08 21 0.05 23 0.06 21 0.05

Quadratic

k = 1 14 0.1 13 0.1 47 0.2 19 0.2 22 0.1 19 0.1

k = 2 16 0.1 15 0.1 48 0.2 21 0.2 24 0.2 21 0.2
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