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Abstract

Total variation regularization is well established as a denoising procedure with excellent edge capturing
properties, however images denoised using total variation regularization suffer from the staircasing effect.
Many models to reduce this effect have been proposed in the literature but not all models can be solved
effectively. Our interest is in the fast iterative solution of the nonlinear partial differential equations arising
from these models, specifically the use of nonlinear multigrid methods.

In this paper we first survey a class of staircasing reduction models and then focus on using effective
solution as a criterion to find the most suitable model in this class of models that maintains edges by
compromising in some way between Total Variation and H1 regularization. Our experimental results com-
pare the performance of nonlinear multigrid solvers, the fixed point iteration method using preconditioned
conjugate gradient inner solvers and the explicit time marching (gradient descent) approaches.
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1 Introduction

During recording and transmission an image will often become contaminated with random Gaussian type
noise; this is modeled by the equation

z(x, y) = u(x, y) + n(x, y), x, y ∈ Ω

where Ω is a bounded and open domain of R2 (usually a rectangle). Here z is a real function representing
the observed (known) image, which in practice will be a discrete quantity (given in the form of n ×m pixel
values), u is the true image (unknown) and n is an additive (unknown) noise term. The problem of recovering
u from z is an ill-conditioned inverse problem.

Image denoising methods use regularization techniques based on a priori knowledge of the image properties
to approximate u. An early approach was H1 regularization given by the following minimization problem:

min
u

JH1(u), JH1(u) =
∫

Ω

α|∇u|2 +
1
2
(u− z)2dxdy

The convex functional JH1(u) is made up of a regularization functional
∫ |∇u|2 ,which penalizes against non-

smooth images, and a fit to data functional
∫

1
2 (u − z)2, balanced by a regularization parameter α. The

resulting Euler-Lagrange equation for this problem is:

−α∆u + u = z

with homogenous Neumann boundary condition ∂u
∂n = 0, which can be solved efficiently using, for example, a

multigrid method (see [8]). The problem with this approach is that although smooth regions in the image are
recovered well, edges present in the original image are blurred in the reconstruction.

To overcome the poor edge-capturing properties of H1 regularization, Rudin, Osher and Fatemi (ROF) [37]
proposed replacing the

∫ |∇u|2 regularization term with the so-called total-variation (TV) semi-norm
∫ |∇u|

which will allow piecewise smooth images. The resulting minimization problem is:

min
u

JTV (u), JTV (u) =
∫

Ω

α
√
|∇u|2 + β +

1
2
(u− z)2dxdy (1)

where β is a small perturbing parameter that prevents degeneracy of the Euler-Lagrange equation when
|∇u| = 0. The Euler-Lagrange equation for this problem is

−α∇.

(
∇u√

|∇u|2 + β

)
+ u = z (2)

with homogenous Neumann boundary condition ∂u
∂n = 0. Unlike in the H1 case this equation is highly nonlinear

and the fast solution of this equation has been an active area of research over the last decade or so.
The simplest approach is the artificial time marching (or gradient descent) method used by ROF [37]. In

this method the parabolic equation

ut = α∇.

(
∇u√

|∇u|2 + β

)
+ (z − u) (3)

is solved to steady state using an explicit time marching (forward Euler) scheme on the discrete equation. A
steepest descent type method with a line search on the discretization of JTV (u) can be viewed as an explicit
time marching scheme with variable time step. The problem with the time marching approach is that due
to stability restrictions the time step must be taken to be very small, resulting in very slow convergence.
Marquina and Osher [34] reduce the stability constraints on the time step by multiplying (3) by |∇u|.
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Vogel and Oman [43] proposed a ’lagged diffusivity’ fixed-point iterative method (see also [42]) for solving
(2) in which the following linear equation is solved on each step

uk+1 − α∇.

(
∇uk+1

√
|∇uk|2 + β

)
= z

to update u. This method is equivalent to a semi-implicit time marching method with infinite time step and is
globally convergent with linear convergence. The linear system to be solved on each step is symmetric positive
definite and several different methods have been used in the literature to solve it, these include preconditioned
conjugate gradient (pcg) with incomplete Cholesky preconditioner [14], geometric multigrid [41] (either on its
own or as a preconditioner for preconditioned conjugate gradient) and Algebraic multigrid [17], which is more
robust with respect to small values of β than geometric multigrid. In practice accurate solution of the linear
equation is not necessary, and reducing the linear residual by a factor of 10 is usually enough to give a method
which is optimal in terms of time taken.

Chan, Zhou and Chan [16] recognized that Newton’s Method has a small domain of convergence for this
problem particularly with respect to small values of β and proposed a continuation procedure on β. To
overcome this in a more fundamental way Chan, Golub and Mulet [14] replace the original problem with an
equivalent (u,w) system

−α∇.w + u− z = 0
w

√
|∇u|2 + β −∇u = 0, ‖w‖∞ ≤ 1

by introducing a new variable w = ∇u/
√
|∇u|2 + β. Alternatively this system can be seen as the conditions

needed to bridge the duality gap between the primal and dual problems. The new system is better behaved
with respect to Newton’s method due to its quasi-linearity, and the cost of each step is only slightly more than
for the primal problem (2). The linear solve on each step is done using a preconditioned conjugate gradient
method with incomplete Cholesky preconditioner. The method appears globally convergent with quadratic
convergence. The primal-dual method incorporates the primal and the dual variable, other authors have
worked directly with the dual formulation of the TV problem see Carter [5] and more recently Chambolle [6],
this avoids the use of the β parameter. Incidentally, one may eliminate u in (1) to derive the dual method [6].

In [38] we proposed using a nonlinear multigrid (FAS) method (see, for example, [39, 23]) to solve (2). Our
method which used a smoother based on the fixed point method but using just 3 steps of Gauss-Seidel on
the linear system on each step performed well in comparison with the fixed point and primal-dual methods
provided the parameter β was not too small. Nonlinear multigrid methods for total variation denoising have
also been studied by Frohn-Schauf, Henn and Witsch in [22]. Chan and Chen [9, 10] and Chen and Tai [19]
have multilevel methods working directly with the minimization problem (not the Euler-Lagrange equation).
Finally another approach to solving (1) is the active set methods of Karkkainen and Majava [27] and Ito and
Kunisch [24].

Although TV regularization is very good at recovering edges and blocky images it does suffer from the
’staircasing effect’ in which smooth regions (ramps) in the original image are recovered as piecewise smooth
regions (staircases) in the reconstruction. In the literature there have been many attempts to devise image
denoising methods which reduce the staircasing effect seen in images denoised using TV regularization with no
one approach gaining universal appeal. In most cases the emphasis is on designing new suitable regularization
functionals which reduce staircasing as well as recover edges via retaining some form of the TV regularization.
However no particular attention has been paid to the fast efficient solution of the resulting equations; in fact,
some of these new models cannot be solved efficiently. This paper is thus motivated to study how effectively
a class of staircasing reduction models can be solved by three selected iterative methods.

The underlying Euler-Lagrange equation, to be studied here, is of the form

−α∇.
(
D(

√
|∇u|2 + β)∇u

)
+ u = z (4)
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with various choices of D(t), where D(t) = 1/t reproduces the standard ROF model. Our three selected
iterative methods are: (i). the fixed point method; (ii) the time-marching methods; (iii) the nonlinear multigrid
method as proposed in [38]. Therefore, our objective is to find the most reliable model by two criteria: quality
of restoration results and efficiency of a fast iterative solution. It turns out that a modified model out of the
tested models fits our criteria.

The rest of the paper is organized as follows. In Section 2 we review the various staircase reducing models
that have been proposed in the literature including the class of models that we study in this paper. In Section 3
we discuss numerical solution of 4 particular PDE models in this class: discretization and iterative algorithms
as well as the implementation of the iterative methods for each of the models and some numerical results.
Section 4 focuses on the model which out of those tested we feel is best both in terms of reconstructed image
quality and robustness of solvers and considers an effective modification to the best approach found from
Section 3. Finally in Section 5 some conclusions are drawn.

2 An overview of staircasing reduction models

In this section we review various models to reduce the staircasing effect that have been proposed in the
literature. In the next section we shall focus on the first class of the models.

2.1 Combining TV and H1

A popular approach to reducing staircasing is to try and combine the ability of TV denoising to preserve edges
with the ability of H1 denoising to preserve smooth regions. In this paper we consider 4 such approaches for
which we will attempt to use nonlinear multigrid to solve the resulting PDEs, they all involve a minimisation
problem of the form

min
u

∫

Ω

αΦ(|∇u|) +
1
2
(u− z)2dxdy

which has the Euler-Lagrange equation

−α∇.

(
Φ′(

√
|∇u|2 + β)

∇u

|∇u|
)

+ (u− z) = 0

where a small parameter β > 0 is added (as in the TV case with Φ(g) = g) to avoid |∇u| = 0.
Model 1. Noting that the H1 case corresponds to Φ(g) = g2, one can propose as in [2, 29]:

Φ(|∇u|) =
1
p
|∇u|p (5)

we then have
Φ′(|∇u|) = |∇u|p−1 and

Φ′(|∇u|)
|∇u| =

1
|∇u|2−p

where 1 < p < 2 and in order to recover edges reasonably well p should be close to 1, say 1.1.
Model 2. A more sophisticated approach would be to choose p in some way adapting to the behavior of

|∇u|. To this end, Blomgren [1] and Blomgren, Chan, Mulet [2] proposed the following general choice

Φ(|∇u|) = |∇u|p(|∇u|), with lim
g→0

p(g) = 2 and lim
g→∞

p(g) = 1 (6)

which results in a non-convex minimisation problem, where p(g) is a monotonically decreasing function i.e
TV-like regularization (p = 1) is used at edges, H1-like regularization (p = 2) is used in flat regions and in
between p ∈ (1, 2). We have

Φ′(|∇u|) = p(|∇u|)|∇u|p(|∇u|)−1 + p′(|∇u|)|∇u|p(|∇u|) log(|∇u|).
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Blomgren [1] suggests the following particular choice for p :

p(g) =





2, g = 0
ag3 + bg2 + cg + d, 0 < g < sgmax

1, g ≥ sgmax

(7)

where the third order polynomial is chosen so that p′(0) = 0 and p′(sgmax) = 0, gmax is the maximum realizable
gradient and 0 < s ≤ 1. Resolving the conditions on p gives a = 2

(sgmax)3 , b = −3
(sgmax)2 , c = 0 and d = 2. If

we assume that our image is a square n× n image with values in the range [0, 255], then gmax = 255
√

2(1/h)
where h is the grid spacing (see later). We note here that in a later paper, Chan, Esedoglu, Park and Yip [13]
suggested taking p to be a monotonically decreasing function from 2 to 0 e.g p(g) = 2

1+2g , here we focus on
the case that p takes values between 2 and 1.

Model 3. A simplified alternative to (6) would be to replace p = p(|∇u|) by p = p(|∇u∗|) for some
“known” quantity u∗ approximating u (and thus ‘less’ nonlinear), i.e. take

Φ(|∇u|) =
1

p(|∇u∗|) |∇u|p(|∇u∗|) (8)

Φ′(|∇u|) = |∇u|p(|∇u∗|)−1 and
Φ′(|∇u|)
|∇u| =

1
|∇u|2−p(|∇u∗|) .

This choice ensures that the new minimization problem is convex. Blomgren [1] suggests u∗ = G ∗ z where G

is a Gaussian used to smooth the noisy image z. More recently this approach was used by Karkkainen and
Majava [28] who suggest u∗ = uTV and

p(|∇uTV |) =





2 |∇uTV | < g1

1.5 |∇uTV | = g1

p1(|∇uTV |) g1 < |∇uTV | < g2

1 |∇uTV | ≥ g2

(9)

where p1(g) is a second order polynomial satisfying p1(g1) = 1.5, p1(g2) = 1 and p′(g2) = 0. The idea here is
that a value of 1.5 is enough to recover smooth regions effectively with larger values possibly oversmoothing the
image. In order that a nonlinear CG solver can be implemented effectively p takes values 2 for |∇uTV | < g1

where g1 is small, p then jumps to a value of 1.5 and then decreases smoothly as |∇uTV | increases until
|∇uTV | = g2, g2 being small enough so that p = 1 at all edges in the image. The values of g1 and g2 are chosen
using a histogram of |∇uTV | values.

Another similar, but slightly different, approach is used by Chen, Levine and Rao [20]:

Φ(|∇u|) =

{
1

p(|∇u∗) |∇u|p(|∇u∗|) |∇u| ≤ ε

|∇u| − εp(|∇u∗|)−εp(|∇u∗|)

p(|∇u∗|) |∇u| > ε

p(|∇u∗|) = 1 +
1

1 + k|∇u∗|2
where u∗ = G ∗ z. The difference here is that the threshold for a switch to pure TV regularization is based
on the gradient of u rather than u∗ (so implicitly ‘nonlinear’). The function p is a monotonically decreasing
rational function which is 2 at |∇u∗| = 0 and tends to 1 as |∇u∗| tends to infinity. Some theoretical study of
this model was conducted in [20].

Model 4. The approach proposed in [2, 1] tries to combine TV and H1 in a convex combination:

Φ(|∇u|) = π(|∇u|)|∇u|+ (1− π(|∇u|))|∇u|2 (10)

with limg→0 π(g) = 0 and limg→∞ π(g) = 1. In this case

Φ′(|∇u|) = π′(|∇u|)(|∇u| − |∇u|2) + π(|∇u|)(1− 2|∇u|) + 2|∇u|.
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It is suggested in [1] to take π(g) = 2− p(g) where p is the polynomial outlined in (7).
Finally we mention several other (less representative) methods which also compromise between TV and

H1 regularization. The first is the inf-convolution of the TV and H1 regularization functionals proposed in [7]
the resulting minimization problem is equivalent to:

min
u

∫

|∇u|≥ε

|∇u|dxdy +
ε

2

∫

|∇u|<ε

|∇u|2dxdy +
λ

2

∫

Ω

(u− z)2dxdy.

Another approach proposed in [25] by Ito and Kunisch is to minimize the functional
∫

Ω

αΦ(|∇u|) +
1
2
(u− z)2dxdy

where Φ is chosen so that it behaves like |∇u| for large values of |∇u| and (in contrast to other models seen
above) for small values of |∇u| and behaves like |∇u|2 for mid range values of |∇u|.

2.2 Higher Order Models

Another popular way to reduce staircasing is to introduce in some way higher order derivatives into the
regularization term. In [7] Chambolle and Lions do this by minimizing the inf-convolution of the TV norm
and a second order functional

min
u1,u2

∫

Ω

|∇u1|+ µ|∇(∇u2)|+ λ

2
(u1 + u2 − z)2dxdy. (11)

Here u is decomposed into a smooth function u2 and a function containing the discontinuities u1. Another
way to use higher order derivatives is introduced by Chan et al [15] in which the non-convex functional

∫

Ω

[
α
√
|∇u|2 + β + µ

(∆u)2

(
√
|∇u|2 + 1)3

+
1
2
(u− z)2

]
dxdy

is minimized. Here the (|∇u|2 + 1)−3/2 term multiplying the higher order term ensures that true edges
(with very large gradient) are not penalized while staircasing is reduced. Instead of combining the TV norm
and second order derivatives within one regularization functional Lysaker and Tai [33] use two regularization
functionals:

E1(u) =
∫

Ω

|∇u|+ λ1

2
(u− z)2dxdy

E2(v) =
∫

Ω

(v2
xx + v2

xy + v2
yx + v2

yy)1/2 +
λ2

2
(v − z)2dxdy.

Their approach is to use an iterative procedure in which they simultaneously apply an explicit time marching
method to the Euler-Lagrange equation of each functional. After each step the current iterates uk and vk are
combined in a convex combination to give w = θkuk + (1 − θk)vk; uk and vk are then overwritten with w in
preparation for the next step. Here θk is chosen to be 1 only at the largest jumps (edges) allowing smaller
jumps due to staircasing to be suppressed by the higher order PDE. In an earlier paper the same authors with
Lundervold [32] considered E2 on its own and another functional

∫
Ω
|uxx|+ |uyy|+λ/2(u− z)2dxdy which was

not rotationally invariant.

2.3 Other ways to reduce staircasing

Marquina and Osher [34] preconditioned the right hand side of the parabolic equation (3) with |∇u| which
had a staircase reducing effect. This is because the inclusion of β only in the |∇u| term multiplying the first
term on the right hand side of (3) and the use of an upwind difference scheme for the |∇u| multiplying the
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second term leads to a different numerical steady state which is less staircased than the TV problem. In a
similar vein is the algebraic scaling approach used in [26] which is equivalent to using

ut = min
(amax

2
(|∇u|2 + β)1/2, 1

)
∇.

(
∇u√

|∇u|2 + β

)
+ λ(z − u)

where amax is a parameter to be chosen. We also mention the Gauss-curvature driven diffusion approach (not
related to any optimization problem) proposed in [30] which has several desirable properties including staircase
reduction:

ut = ∇.

(∣∣∣∣∣
uxxuyy − u2

xy

(1 + u2
x + u2

y)2

∣∣∣∣∣∇u

)
.

See also [4, 35], [11], [12, 36, 40, 46] for the iterated TV model, the TV L1 model and the texture models
respectively.

3 Algorithms for solving the combined TV and H1 models

Our aim in this paper is first to implement and compare 3 numerical algorithms for solving the the above
listed 4 combined TV and H1 models, and then to propose a modified staircasing reduction model which can
be efficiently solvable. The selected algorithms are: (i) explicit time marching methods; (ii) fixed point type
methods; (iii) the nonlinear multigrid method [38]. We now outline our discretization scheme, introduce the
iterative methods and give details of implementation and numerical results.

Remark 1 As mentioned earlier less focus has been given to the efficient solution of the models of the previous
section than their effectiveness in reducing staircasing. In [2] a fixed point type method is proposed to solve
model 2 and model 4 but no numerical results are given. In [28] a nonlinear conjugate gradient method is used
to solve model 3 with the particular choice of p outlined above. In the case of model 1 and model 3, the choice
of D in (4) is similar to the TV case with the added advantage in model 3 that when |∇u| is small p(|∇u∗|)
should be close to 2, preventing jumps in the diffusion coefficient as large as in the TV case. For models 2
and 4 the Euler-Lagrange equation is more nonlinear than in the TV case. We also note that many iterative
methods can benefit from using the separate acceleration technique of [44].

Discretization. Below we outline the discretization scheme used. Given that the image data will be given
in the form of n ×m pixel values, each representing average light intensity over a small rectangular portion
of the image, we use a cell-centered discretization of our domain and a cell-centered finite difference scheme
to discretize (2). From now on we assume that Ω = [0, n] × [0,m]. We discretize the domain Ω into Ωh with
n×m rectangular cells of size h× k where h = k = 1, with grid points placed at the center of the cells so grid
point (i, j) is located at

(xi, yj) = ((2i− 1)h/2, (2j − 1)k/2) .

Denoting the discrete version of equation (4) by Nh(uh) = zh, we have:

(Nh(uh))i,j = ui,j − αh

[
δ−x

(
Dij(gij)δ+

x ui,j

)
+ γδ−y

(
Dij(gij)γδ+

y ui,j

)]
= zij (12)

where uh and zh are grid functions on Ωh,

gi,j =
1
h

√
(δ+

x ui,j)2 + (γδ+
y ui,j)2 + βh

Dij(gij) =





1
h (g−(2−p)

ij ) Model 1
1
h (p(gij)g

p(gij)−1
ij + p′(gij)g

p(gij)
ij log(gij))g−1

ij Model 2
1
h (g−(2−pi,j)

ij ) Model 3
1
h (π′(gij)(gij − g2

ij) + π(gij)(1− 2gij) + 2gij)g−1
ij Model 4

(13)
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αh = α/h, βh = h2β and γ = h/k = 1

and
δ±x ui,j = ± (ui±1,j − ui,j) δ±y ui,j = ± (ui,j±1 − ui,j) .

Note that D is actually only dependant on (i, j) in the case of model 3. We also have boundary condition:

ui,0 = ui,1, ui,m+1 = ui,m, u0,j = u1,j , un+1,j = un,j . (14)

Remark 2 Unlike in the TV case where the choice of Ω is not important provided αh and βh are chosen
to be the same, whatever the value of h, there is not in all cases here a straightforward relationship (the
exception is model 1) between the case Ω = [0, n] × [0,m] i.e (h, k) = (1, 1) and the case Ω = [0, 1] × [0, 1] i.e
(h, k) = (1/n, 1/m). We have chosen the former to be consistent with the majority of papers.

We now introduce the 3 algorithms to be used.

Algorithm 1 (Time Marching)

Choose initial guess u0
h

Set k = 0.
While ‖vec(zh −Nh(uk

h))‖2 > tol
uk+1

h = uk
h + ∆t

[
zh −Nh(uk

h)
]

k = k + 1
end

The time step ∆t is determined by experiment as the largest value which gives stability of the algorithm. Here
vec denotes the stacking of a grid function into a vector. tol is typically 10−4‖vec(zh −Nh(zh))‖2, where ‖.‖2
is the Euclidean norm.

Algorithm 2 (Fixed Point Method)

Choose initial guess u0
h and Set k = 0.

While ‖vec(zh −Nh(uk
h))‖2 > tol

Set uk+1
h to be the result of applying some iterative method to:

Lh(uk
h)wh = zh

k = k + 1
end

The linear operator Lh(uk
h) on step k + 1 is given by the stencil:



0 −αλDij(gk
ij) 0

−αDi−1,j(gk
i−1,j) 1 + αΠij −αDij(gk

ij)
0 −αλDi,j−1(gk

i,j−1) 0




where Πij = (1+λ)Dij(gk
ij)+Di−1,j(gk

i−1.j)+λDi,j−1(gk
i,j−1). The linear solver used in most cases is a geometric

multigrid method with red-black Gauss-Seidel pre-correction and black-red Gauss-Seidel post correction as
smoother (c.f. [41, 43]). We only require a relatively small decrease in the linear residual (typically a halving)
as this seems to give the best results in terms of overall cpu time. We may also require the use of methods such
as preconditioned conjugate gradient and minimum residual, we stack the grid functions along rows of pixels
into vectors uk

h = (uk
1,1, u

k
2,1, ..., u

k
n,1, u

k
1,2, ....., u

k
n,m)T and zh, the resulting system is of the form A(uk

h)wh = zh

where A is symmetric.
Nonlinear Multigrid. Multigrid methods based on the recursive application of smoothing relaxation and

coarse grid correction are efficient solvers for a wide range of linear and nonlinear elliptic partial differential
equations. Below we give a brief introduction to the full approximation scheme (FAS) nonlinear multigrid
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scheme and review the smoother used in [38] for the TV problem before giving the algorithm for a similar
scheme to be used in this paper. For a more comprehensive treatment of multigrid see for example [3, 18, 39, 45]
and references therein.

Denote by Nhuh = zh the nonlinear system (12) and by Ω2h the n/2×m/2 cell-centered grid which results
from standard coarsening of Ωh i.e the cell-centered grid with grid spacing (2h, 2k). If vh is an approximation
to the solution uh define the error in vh by eh = uh − vh and the residual by rh = zh −Nhvh recall also that
these quantities are related by the nonlinear residual equation:

Nh(vh + eh)−Nhvh = rh.

If eh is ‘smooth’ it can be well approximated on Ω2h. To describe a multigrid cycle, we define the transfer and
smoothing operators.
The Restriction operator is

I2h
h vh = v2h

where
(v2h)i,j =

1
4
[(vh)2i−1,2j−1 + (vh)2i−1,2j + (vh)2i,2j−1 + (vh)2i,2j ]

1 ≤ i ≤ n/2, 1 ≤ j ≤ m/2.

The Interpolation operator is defined by
Ih
2hv2h = vh

where
(vh)2i,2j = 1

16 [9(v2h)i,j + 3[(v2h)i+1,j + (v2h)i,j+1] + (v2h)i+1,j+1]
1
16 [9(v2h)i,j + 3[(v2h)i−1,j + (v2h)i,j+1] + (v2h)i−1,j+1]
1
16 [9(v2h)i,j + 3[(v2h)i+1,j + (v2h)i,j−1] + (v2h)i+1,j−1]
1
16 [9(v2h)i,j + 3[(v2h)i−1,j + (v2h)i,j−1] + (v2h)i−1,j−1]

1 ≤ i ≤ n/2, 1 ≤ j ≤ m/2.

Local smoothers. At grid point (i, j) the Euler-Lagrange equation is

ui,j − αh (Di,j(gi,j)(ui+1,j − ui,j)−Di−1,j(gi−1,j)(ui,j − ui−1,j)

+γ2[Di,j(gi,j)(ui,j+1 − ui,j)−Di,j−1(gi,j−1)ui,j − ui,j−1)]
)

= zi,j

(15)

where gij depends on ui+1,j , ui,j+1 and ui,j . If we freeze all non (i, j) terms at the current approximation
then we have a nonlinear equation in one variable to solve in order to update the approximation at (i, j),
which can be done using a step of Newton’s method. This type of local nonlinear relaxation scheme is known
as Gauss-Seidel Newton. In our investigations into the TV problem we found that this type of method only
converged with heavy under-relaxation and was not useful as a smoother for the nonlinear multigrid method.
An alternative approach would be to freeze also the g terms in (15) rather than just the ui,j terms in g.
In this case we have a linear equation in one variable to solve at each grid point. This type of approach is
more stable than Gauss-Seidel Newton and can be speeded up in the TV case by the application of nonlinear
multigrid, however we found in [38] that a better option is a smoother in which the Euler-Lagrange equation
is linearized globally as in the fixed point method before a few (3 seems to be optimal) steps of linear Gauss-
Seidel relaxation are applied to the linear system i.e Dij(gij) is evaluated for all (i, j) at the beginning of the
smoothing step using the value of the current iterate before linear Gauss-Seidel is used to update. We call this
smoother FPGS. For clarity the algorithm for one step of the FPGS smoother is given below

vh ← FPGS(vh, Nh, zh)

for i = 1 : n

for j = 1 : m

9



Evaluate gi,j = ((δ+
x vi,j)2 + (γδ+

y vi,j)2 + βh)−1/2

and Di,j(gi,j) according to Nh using (13).
end

end
Perform Gauss-Seidel steps on linear system (start from w = vh)
for iter = 1 : it

for j = 1 : m

for i = 1 : n

w̄ ← w, T0 = D(gi,j)i,j , T1 = D(gi−1,j)i−1,j , T2 = D(gi,j−1)i,j−1,

wi,j ← zi,j + αh(T0(w̄i+1,j + γ2w̄i,j+1) + T1w̄i−1,j + γ2T2w̄i,j−1)
1 + αh((1 + γ2)D(gi,j)i,j + T1 + γ2T2)

or an appropriate modification if (i, j) is a boundary point.
end

end
end
vh ← wh

We take it = 3 unless otherwise stated.
Any iterative method which smooths the error on the fine grid i.e damps high frequency Fourier components

of the error while not necessarily reducing its size greatly can be improved by the use of coarse grid correction,
in which a coarse grid analogue of the residual equation is solved (solution on the coarse grid being less
expensive than on the fine grid) to obtain a coarse grid approximation of the error, which is then transferred
back to the fine grid to correct the approximation vh.

The nonlinear multigrid method. We are ready to state the algorithm for the FAS multigrid method
with FPGS smoother that we use in this paper. The method is a V-cycle method, which means that just one
recursive call to the algorithm is made on each level to approximately solve the coarse grid problem, we have
found that using the more expensive W-cycle (performing two cycles to solve the coarse grid problem on each
level) does not give a significant improvement in convergence and therefore is not pursued.

Algorithm 3 (Nonlinear Multigrid Method)

Set vh to be some initial guess.
While ‖vec(zh −Nh(vh))‖2 > tol

vh ← NLMGh(vh, Nh, zh, ν1, ν2)
end
where NLMGh is defined recursively as vh ← NLMGh(vh, Nh, zh, ν1, ν2) as follows:

1. If Ωh =coarsest grid, solve Nhuh = zh using Fixed Point Method and stop.
Else For l = 1, .., ν1 vh ← FPGS(vh, Nh, zh)

2. v2h = I2h
h vh, v̄2h = v2h, z2h = I2h

h (zh −Nhvh) + N2hv2h

3. v2h ← NLMG2h(v2h, N2h, z2h, ν1, ν2)

4. vh ← vh + Ih
2h(v2h − v̄2h)

5. For l = 1, .., ν2 vh ← FPGS(vh, Nh, zh)

Here vh ← FPGS(vh, Nh, zh) denotes the updating of vh via one step of the FPGS smoother. N2h is the
coarse grid analogue of Nh which results from standard coarsening i.e the nonlinear operator which results from
discretizing the Euler-Lagrange equation using a cell-centered grid with grid spacing (2h, 2k). The number of
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pre and post-correction smoothing steps (ν1 and ν2) we use depends on the model under consideration, details
will be given below. We use standard cell-centered interpolation and restriction operators outlined earlier, and
take the coarsest grid as 4× 4.

Numerical Results. Now we present some numerical results and give details of some of the issues
regarding our implementation of iterative methods for each of the four models. It should be remarked that
although Algorithms 1-2 have been used for solving some of these equations it is up to now unclear whether
Algorithm 3 would work for the models considered.

Tests are run on the test hump image seen in Figure 1, which has both smooth regions, high intensity edges
and low intensity edges and the more realistic Lenna image shown in Figure 2. In each case we have tried to
choose parameters which give the optimal reconstruction, focusing on the need to reduce staircasing. What
the optimal reconstruction is, is somewhat subjective, as a guide we have used mesh and image plots as well
as Peak signal to noise ratio (PSNR) defined by

PSNR = 20 log10(
255

RMSE(u, u0)
), RMSE(u, u0) =

√∑
(i,j)(ui,j − u0

i,j)2

nm

where u is the reconstructed image and u0 is the true image.
The PSNR does not always give a clear guide as to whether one image is less staircased than another as

can be seen in the hypothetical 1D example in Figure 3, so we also take into account the value of PSNRgrad

which we define as 1/2(PSNR(ux, u0
x) + PSNR(uy, u0

y)) this should measure how well the derivatives of the
reconstruction match those of the true image. All methods were implemented in MATLAB on a Sun Fire 880.

Figure 1: Mesh plots of true (left) and noisy (right) Hump image
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Figure 2: True (left) and noisy (right) Lenna image
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Figure 3: A simple 1D example of a staircased reconstruction (squares) which will have a higher PSNR than the
smooth reconstruction (stars), the smooth reconstruction in this case has exactly the same gradient as the true solution
(circles)

In Figure 4, we present some plots showing the results of applying each of the four models to the test hump
image, we also show the results of applying TV and H1 regularization. We remark that it is not our intention
in this paper to carry out a detailed comparison of the various staircase reducing methods in terms of the
quality of the reconstructed images, however we make a few general comments. To some extent all the models
can recover better the smooth regions of the image than the original TV model (1) but in our experience
models 2 and 3 seem to give better overall results than model 1 (as would be expected) and model 4 in which
there is some over-smoothing of the edges (particularly the low intensity edges), this is predicted in [1]. With
models 2 and 3 for the test image shown we have been able (with suitable choices of parameters) to reduce the
staircasing present in the TV reconstructed image while still recovering well the high and low intensity edges
in the image.

Model 1. For this model we consider three choices of p, p = 1.1, p = 1.5 and p = 1.9 mainly to highlight
the effect the value of p has on the convergence of the various methods (the latter two choices will of course
over-smooth the edges). A suitable value of αh to remove the noise is chosen for each value, the larger p is the
smaller αh needs to be. The effect that the parameter βh has on convergence is also studied.

In Table 1 we show results (number of steps required for convergence and cpu time in seconds) for the
Fixed Point method (FP), Nonlinear multigrid method (NLMG) and the explicit time marching method (TM)
run on model 1 for the hump image with 3 different values of p, 1.1, 1.5 and 1.9 the corresponding values of
αh are 52, 24 and 15. Also shown are results for the smoother (FPGS) run on its own. Shown are results for
various values of βh. In all cases the initial guess is taken to be the noisy image z and the stopping criteria
is a reduction in the residual by a factor of 10−4. As linear solver in the fixed point method we use a linear
multigrid method with 2 pre and 2 post correction smoothing steps of Gauss-Seidel relaxation and stop the
iterations when the linear residual has been reduced by a factor of 0.5. Shown in the table are the choices of
ν1 and ν2 which give the optimal nonlinear multigrid method for each case, also shown is the value of the time
step in the time marching method.

We observe that the closer p is to 2 the easier the problem is to solve, less steps are required for each of
the methods and less smoothing steps are required in the nonlinear multigrid method. We see that for p = 1.9
the convergence of the various methods is seemingly invariant to the value of βh. For p = 1.5 decreasing the
value of βh has only a small effect on the FP method and the FPGS smoother and no effect on the nonlinear
multigrid method. In the case that p = 1.1 the value of βh has a significant effect on convergence. We see that
as βh is decreased from 10−2 to 10−4 the cost of the fixed point method increases by 3 times. The cost of the
nonlinear multigrid method doubles and more pre and post correction steps are needed to ensure convergence.
We found that the time marching method cannot converge in a reasonable number of steps. If βh is reduced to
10−10 only the fixed point method converges in a reasonable number of steps (in this case a pcg linear solver
with Cholesky preconditioner gives the best results). This breakdown of the nonlinear multigrid convergence
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Table 1: Comparison of the 3 main Algorithms for Model 1 with various p and β

p βh FP TM

steps cpu ∆t steps cpu

1.1 10−2 43 73 5× 10−4 9502 2540

10−4 73 216

1.5 10−2 14 19 1× 10−3 4054 536

10−4 16 23 1× 10−3 4053 536

10−10 16 23 5× 10−4 8150 1131

1.9 10−2 6 8.8 1× 10−2 303 56

10−10 6 8.8 1× 10−2 303 56

p βh NLMG FPGS

ν1/ν2 steps cpu steps cpu

1.1 10−2 5/5 4 34 748 680

10−4 10/10 4 66 4389 4036

1.5 10−2 1/1 6 13 78 61

10−4 1/1 6 13 94 74

10−10 1/1 6 13 119 93

1.9 10−2 1/1 3 6.9 29 23.9

10−10 1/1 3 6.9 29 23.9
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for very small βh was also observed in the TV (p = 1) case. Apart from this last case the nonlinear multigrid
method significantly speeds up the smoother FPGS and is faster than the time marching and fixed point
methods.

Model 2. For this model p(|∇u|) is chosen to be the polynomial (7). There were several problems that
occurred during the implementation of iterative solvers for this model. The first problem is that the functional
is non-convex and the initial guess seems to have an effect on the quality of the final image. If we take the
noisy image z as initial guess we appear to converge to a minimum which is still highly oscillatory. To achieve
the reconstruction of the test image shown in Figure 4 we had to take the solution to the TV problem as initial
guess, the following discussion relates to experiments run using this initial guess. The second problem is that
unlike in the TV case the Dij terms can take negative values, as a consequence the previous smoother FPGS
is no longer adequate. We proposed a modification of this smoother (to be denoted by FPGS2). Instead of
updating uk+1 by applying 3 Gauss-Seidel steps to the linear system L(uk

h)wh = zh we apply 3 Gauss-Seidel
steps to the new linear system (λ + L(uk

h))wh = zh + λuk
h (essentially we add a λu term to both sides of

the Euler-Lagrange equation and lag the right hand side term). Taking λ large enough will ensure diagonal
dominance of the inner linear system and hence positive definiteness, which ensures convergence of the Gauss-
Seidel steps. In addition we have also used this approach when implementing the fixed point method. We
tried to implement the fixed point method in its original form but had problems finding a suitable inner solver
(linear multigrid did not converge and pcg was not an option) we settled on the minimum residual method
but found that the outer fixed point steps stagnated, this was also the case when we used a direct solver to
solve the linear system. Using the modified fixed point method, we can use linear multigrid or pcg as the inner
linear solver and the outer steps also converge.

We implemented the time marching method, the modified fixed point method and the nonlinear multigrid
method with FPGS2 smoother on the test hump image using a value of s = 0.2 , αh = 10 and λ = 7, in this
case only 2 pre and 2 post correction smoothing steps were required in the nonlinear multigrid method which
converged in 9 steps and was around 1.75 times as fast as the modified fixed point method and over 5 times as
fast as the time marching method. However when we tried to implement this model for the Lenna image we
could not achieve a reasonable quality reconstruction, the image tended to look too blurred or be contaminated
with undesirable artifacts. In addition we found that the nonlinear multigrid method is not effective in that
the convergence stagnates unless a large number (10 or more) of smoothing steps is used and the total number
of smoothing steps in this case is more than if the smoother were run on its own. The convergence of the
modified fixed point method also seems somewhat unstable and typically the number of steps required by the
modified fixed point and time marching methods is considerably larger than the case of the hump image above.
We note that some of the problems with the iterative methods described above also occur in the case of the
hump image for larger values of s (although these do not produce good reconstructions). More work is needed
on this model before we can draw any firm conclusions.

Finally we note that the value of βh seems to have no effect on convergence for this model and so it is
taken to be very small (10−10) in the implementation.

Model 3. We have implemented model 3 with the choice of p(|∇u∗|) described by (9). We have been
able to implement a working nonlinear multigrid method (with the usual FPGS smoother) as well as the fixed
point and time marching methods.

For the parameters g1 and g2 in (9) we take g1 = g∗max/50 (as in [28]) and g2 = sg∗max where 0 < s < 1
and is chosen to give the best visual results, g∗max is the maximum value of g∗i,j over all (i, j) where the g∗i,j is
the discretization of |∇u∗| at grid point (i, j), u∗ in this case being the TV solution uTV .

In Table 2 (left) results of running FP, NLMG and TM on model 3 for the hump test image are shown. In
this case we take s = 0.3 and αh = 30, βh in this case appears to have no effect on convergence and is taken
to be 10−10. We take z as the initial guess and the same stopping criteria as above is used. One pre and one
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Table 2: Comparison of Fixed Point, Time Marching and Nonlinear Multigrid for Model 3 (top) and Model 4
(bottom) on the hump image and the Lenna Image

Model 3
Method Hump image Lenna image

Steps cpu(s) Steps cpu(s)
FP 8 11.8 10 13.8

FPGS 33 24.3 22 17.3

NLMG 4 8.4 5 10.5

TM 213 27.9 169 24.8

Model 4
Method Hump image Lenna image

Steps cpu(s) Steps cpu(s)
FP 16 17.9 22 24.7

FPGS 140 31.3 78 17.5

NLMG 6 8.0 8 10.3

TM 378 34.2 245 21.8

post correction smoothing step is used in the nonlinear multigrid method, for the fixed point method linear
multigrid is used as the linear solver again with the same stopping criteria as in model 1. The time step in
the time marching method is ∆t = 8.0× 10−3.

We observe that the nonlinear multigrid method reduces the cost of the smoother alone by approximately
65%. Nonlinear multigrid is around 1.4 times faster than the fixed point method and around 3.3 times as fast
as the time marching method.

In our second test, we compare the performance of fixed point, time marching and nonlinear multigrid on
the more realistic Lenna image. In this case we take s = 0.9 and αh = 11. The implementation is as above,
except that the time step ∆t = 2.2× 10−2 is used in the time marching method. The usual initial guess and
stopping criteria are used, results are given in Table 2 (left). In this case the speed up in the smoother achieved
by the nonlinear multigrid method is around 40%, the nonlinear multigrid method is around 1.3 times as fast
as the fixed point and around 2.4 times faster than the time marching method.

Model 4. We consider (10) only for the case

π(x) =
εx

εx + q
(16)

In this case the functional is convex (see [2] for the conditions on π required for a convex functional). Also

D(x) =
Φ′(x)

x
=

(ε + q)(εx + 2q)
(εx + q)2

which is positive for nonnegative x ensuring a positive definite linear system in the fixed point method. With
this choice we have successfully implemented nonlinear multigrid fixed point and time marching methods.
With other choices of π(x) e.g 2 − p(x) where p is the third order polynomial, we may not have a convex
functional and some of same issues as in the case of Model 2 may arise. We are not aware of the choice (16)
being used before but in our experience it is easier to implement iterative solvers for this case.

We have found that the choice of ε is more important than the choice of q in obtaining a reasonable
reconstruction. With our choice of π the Euler-Lagrange equation is not degenerate for |∇u| = 0 and so we
take βh = 0.
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In Table 2 (right) we show some results for the FP, NLMG and TM methods run on model 4 for the hump
image, with the particular choice of π outlined above. For the parameters ε and q in π we take values 0.001
and 0.005 respectively, the value of αh is 9. We have found in this case that the fastest multigrid method
was achieved if we took the parameter it in the FPGS smoother to be 1 rather than the usual 3. The initial
guess, stopping criteria and linear solver for the fixed point method are the same as in the case of model 1
and model 3. In the nonlinear multigrid method we use 2 pre and 2 post correction smoothing steps and in
the time marching method we use a time step ∆t = 1.3× 10−2.

We observe that the nonlinear multigrid method reduces the cost of the smoother alone by around 75%.
The nonlinear multigrid method is ≈ 2.2 times as fast as the fixed point method and ≈ 4.3 times as fast as
the time marching method.

We also applied model 4 to the Lenna image, results are shown in Table 2 (right). The value of q and ε

are as above, but αh = 5. The implementation is as above, except that the time step in the time marching
method is ∆t = 2.7 × 10−2. In this case the FPGS smoother on its own performs quite well and is actually
slightly faster than the fixed point method with linear multigrid inner solver. The nonlinear multigrid method
is 1.7 times faster than FPGS. The time marching method is actually quite competitive in this case at around
twice the cost of the nonlinear multigrid method.

Remark 3 Although model 4 did not perform that well on the hump image with oversmoothing of some edges,
we have observed for more realistic images like the Lenna image, where the intensity of edges is more uniform,
this model does not perform that badly in comparison with model 3 as can be seen from the plots in Figure 5.

To summarise we have successfully implemented the three iterative methods for both model 3 and model 4
with a specific choice of π. At the moment their are still some outstanding issues regarding both the robustness
of iterative solvers and the quality of the reconstructed image for model 2 and model 4 with other possible π,
we therefore favour model 3 with the nonlinear multigrid solver as a method which can achieve good quality
reconstructions and can be solved simply and efficiently. In the next section we consider other possible choices
of p(|∇u∗|) and show that the nonlinear multigrid method is the most efficient solver.

4 A modified staircasing reduction model

We hope to improve on the above recommended model 3 further. To this end, we wish to simplify the
specification of p(v) in (9) while maintaining the smooth transition of p(v) = 1 to p(v) = 1.5. Our proposed
modification is still of the general type (4)

−α∇.
(
Φ(|∇u|, |∇u∗|)∇u

)
+ u = z (17)

where
Φ(t, v) = 1

p(v) t
p(v)

p(v) = 1.5
(
1 + 2v

g2

)(
v−g2

g2

)2

+
(
1− 2(v−g2)

g2

)(
v
g2

)2 (18)

and p(t) is a cubic Hermite polynomial satisfying p(g1) = 1.5, p(g2) = 1 and p′(g1) = p′(g2) = 0 (here we
take g1 = 0). An alternative choice of p(v) is a cubic Hermite polynomial satisfying p(g1) = 2, p(g2) = 1 and
p′(g1) = p′(g2) = 0 (which has been found to perform similarly). Here u∗ = uTV is the numerical solution
from the standard ROF model, which distinguishes smooth regions and edges in an image. As with other
models, the idea is again to respect large gradients (edges) and to reduce the effect of TV for small gradients
(smooth regions). First of all, as illustrated in Figure 6, one can observe that such a model is simpler than the
’three piece’ choice for p(|∇u∗|) used in [28]. It only remains to test, in comparison to previous models, how
effectively the new model can reduce the staircasing effect and how efficiently it can be solved by our selected
iterative methods.
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Figure 4: From top left to bottom right, the images recovered using TV, H1, model 1 (p = 1.1), model 2, model 3 and
model 4
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Figure 5: Close up of Lenna Image recovered using model 3 (left) and model 4 (centre), with TV result (right) for
comparison, notice the reduction in staircasing on the face and shoulder
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Figure 6: Comparison of the choice of the exponent of a modified TV function

Table 3: Comparison of solution quality (PSNR) and speed (by MG) of Model 3 and the new model

Image Model 3 The new model

PSNR PSNRgrad PSNR PSNRgrad

Hump 41.77 47.26 42.45 48.03
Lenna 28.73 28.31 28.53 28.51

(NLMG) steps CPU steps CPU

Hump 4 13.1 4 14.4

Lenna 4 13.7 4 14.4

Restored quality comparison. Instead of visualizing the restored images, we compare the PSNR values
of the new model with Model 3 in Table 3. The same values of g2 and αh are used for both model 3 and
the new model. The results presented illustrate the general trend that we have observed; for the hump image
both the PSNR and PSNRgrad values are higher for the new model than for model 3 while in the case of the
Lenna image we can achieve slightly highr PSNR values with model 3 but the PSNRgrad values are higher
with the new model, on visual inspection Lenna’s face also looks a little smoother when using the new model.

Efficiency comparison. In terms of implementation, the new model can be solved similarly to model 3
as they are of the same model type. The cost of 4 nonlinear multigrid steps with 2 pre and 2 post correction
smoothing steps is shown in Table 3. The cost of the new model per step is very slightly higher than for model
3, we think this is because it costs slightly less in terms of cpu to evaluate |∇u|2−p when p = 1 or 2 than it
does when 1 < p < 2 and model 3 takes p = 2 when |∇u∗| < g1.

In general the advantage of the nonlinear multigrid method over the fixed point method and, in particular,
the time marching method is greater for the new model (polynomial from 1.5 to 1) than it is for model 3, the
nonlinear multigrid method has been observed to be over twice as fast as the fixed point method and up to
90 times as fast as the time marching, the advantage in the case of the other polynomial (2 to 1) is similar to
that observed for model 3.

Remark 4 We have considered several other choices of p and u∗ which include general second and third
order polynomials ranging between 2 < q < 1 at 0 and 1 at sg∗max and a rational similar to that used by
[20, 21, 31] but with the threshold for TV regularization built into p, for both u∗ = uTV and u∗ = Gγ ∗ z where
Gγ = ce−γ(x2+y2) is a Gaussian used to smooth the noisy image. Typically q should be between 1.75 and 1.5
to give the best results and 0.75 is a suitable choice for γ. For some realistic images u∗ = Gγ ∗ z gives slightly
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superior results to u∗ = uTV in our experience, although uTV is better for the hump image. The nonlinear
multigrid method is in all cases we have tested faster than the fixed point and time marching method.

5 Conclusion

We studied several staircasing-reducing regularization methods in this paper. Firstly we compared the ef-
ficiency of solving these models by 3 selected iterative solvers and the restored quality, and concluded that
Model 3 is the most robust staircasing reduction model. Secondly we proposed a simpler model than Model
3. Numerical tests show that the new model offers better restored quality (in terms of higher PSNR values)
and equally efficient solution.
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