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Abstract

Sparse approximate inverse (SPAI) preconditioners are effective in accelerating iterative solution
of a large class of unsymmetric linear systems and their inherent parallelism has been widely explored.
The effectiveness of SPAI relies on the assumption of the unknown true inverse admitting a sparse
approximation. Furthermore, for the usual right SPAI, one must restrict the number of nonzeros in
each column to control the overall construction cost and this restriction can reduce the effectiveness
of such preconditioners. To extend the applicability of SPAI, this paper proposes to use two-level
preconditioning: possible dense columns of the true inverse, skipped by right SPAI (column-wise), will
be better approximated by left SPAI (row-rise). Essentially we approximate the true inverse by sparse
matrices via a Gauss-Jordan like decomposition. Numerical experiments on a class of benchmark test
matrices show that our new idea of two-level preconditioning can lead to a major enhancement to
the standard SPAI method.

Keywords: Sparse approximate inverses, iterative solution, two-level preconditioners,

Gauss-Jordan decomposition, unsymmetric systems.

AMS subject class: 65F05, 65F10, 65F15, 65Y05, 65F50.

1 Introduction

Sparse approximate inverse (SPAI) represents one effective preconditioning idea, among many competing

methods, for accelerating iterative solution of a class of unsymmetric linear systems. The most attractive

feature of SPAI is its inherent parallelism, without which the setup process can be extremely expensive.

In this paper, we are concerned with SPAI for a particular class of difficult problems and propose an

improvement. These problems are characterized as those matrices whose inverse cannot be approximated

by a sparse matrix in some of its columns. Thus our proposed method will improve the robustness of SPAI

methods. However other preconditioning methods (e.g. the incomplete LU decomposition preconditioner

(ILU) [44]) may be equally effective for the problem types concerned.

Below we shall first define the basic notation and then give a general introduction to the topic. We

consider the iterative solution of a large linear system of equations

Ax = b, (1)
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where x, b ∈ Rn and A ∈ Rn×n is sparse and unsymmetric, by Krylov subspace methods [1, 2, 31, 32,

44, 46]. Convergence of an iterative solver is usually accelerated by a preconditioner M i.e. instead of

using (1), we solve (left preconditioning)

M2Ax = M2b

or (right preconditioning)

AM1y = b, x = M1y. (2)

The design of an effective preconditioner M (here M1 or M2) for general problems is a mathematical

challenge [18]. However, more and more specific problems are being successfully solved using precondi-

tioned iterative solvers. Clearly one desires to ensure that M ≈ A−1 in some way and at the same time

that minimal additional computation is needed.

In this paper we aim to improve a right preconditioner M1, which is constructed as a sparse approxi-

mate inverse in the Frobenius norm

min
M1

‖AM1 − I‖2F , (3)

by combining it with a left level 2 preconditioner M2

min
M2

‖M2(AM1)− I‖2F , (4)

where the nonzeros of M1,M2 fall into some suitably prescribed sparsity patterns. The method (3) has

been studied by many researchers [4, 21, 22, 26, 33, 35, 36, 39, 40, 47]. The use of the F -norm naturally

decouples (3) into n least squares problems

min
mj

‖Amj − ej‖22, j = 1, · · · , n, (5)

where M1 = [m1, . . . , mn] and I = [e1, . . . , en]. This so-called right preconditioner is column based

and frequently used; construction of a left preconditioner is similarly developed and is row based [33].

In this paper we shall consider both types of preconditioners. However, an alternative form of explicit

sparse approximate inverse preconditioners is the factorized triangular preconditioner

min
W, Z

‖WT AZ − I‖2F (6)

as proposed and studied in the factorized sparse approximate inverse (FSAI) work [39, 40, 41] for the

symmetric case and the approximate inverse (AINV) work [5, 6, 9] for the unsymmetric case. Here both

W and Z are sparse upper triangular matrices with W = Z for the symmetric case. With (6), the

preconditioned system of (1) is the following WT AZy = WT b, x = Zy. This preconditioning idea may

be viewed as stemmed from the fractionization technique as discussed in [30, 51].

A common assumption in constructing M1 in (3) is that A−1 admits a sparse approximation which

is characterized by some pattern S. However, only in relatively few cases can the pattern S be suitably
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specified a priori: one well known case is when A is diagonally dominant [16, 17, 27] and another case is

when A has a finger-like pattern arising from a wavelet discretization of special differential and integral

operators [25]. For a general matrix A, searching for a suitable S adaptively has been suggested in

[23, 24, 35, 33]. These adaptive methods have been shown to be effective for a large class of problems

where the following estimate can be achieved efficiently

‖Amj − ej‖2 ≤ ε (7)

(where ε is small; say ε = 0.4 as in [35]). Inherent parallelism is the main advantage of SPAI type

preconditioners which has been explored in [22, 33, 35]. Applications of the SPAI idea to other problems

are reported in [14, 15, 25, 48]. Nevertheless, there remain many problems that SPAI based methods

cannot solve efficiently.

One of the main weakness of SPAI methods stems from the above mentioned restriction of the number

of nonzeros in any single column of M1 (since construction of the preconditioner with too many nonzeros

can be as expensive as a direct solver). This restriction differs from that of the total number of nonzeros

in M1 being comparable to A. In the special case of a right preconditioner M1 requiring some nearly

dense columns, a left preconditioner generated using the row version of SPAI must be considered for

efficiency consideration [33]. For either version, it is not possible for an approximate inverse to acquire

both dense rows and columns. Therefore not surprisingly, some matrix problems are beyond the scope of

the current SPAI methods [21, 33, 35]. One notes that the same argument may not be applicable to the

FSAI type preconditioners [41] although other robustness problems exist.

This paper addresses some problem classes where a right preconditioner generated by SPAI is not very

effective and finds an improved method based on two-level sparse approximate inverse preconditioning.

Our proposed method appears to have increased the robustness of SPAI methods. Although this work

applies to the unsymmetric case, similar idea of two-level preconditioning for the symmetric case but for

a different FSAI method has been proposed in [38, 39, 41]. For the unsymmetric case, two-level precon-

ditioning ideas based on deflation techniques can be found in [13] and the references therein. Beyond the

class of problems which our improved preconditioner can solve effectively, other preconditioners such as

the ILU should be considered and in fact it can be beneficial for the SPAI and ILU ideas to be combined

[10].

2 Sparse approximate inverse preconditioners

SPAI preconditioners from (3) are essentially determined by the sparsity pattern S that approximates

the inverse A−1. Here we summarise the adaptive approaches of [33, 35] that find a pattern S from any

initial guess. See also [42] for another exposition.
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Consider the solution of the least squares problem from (5) i.e. Amj = ej , j = 1, . . . , n. The idea

of selecting S is to approximate accurately the dense solution vector mj , column j of matrix A−1, by

some sparse vector with the least number of nonzeros. Let mj be approximated by some initial sparse

vector mj which has kj nonzeros. Denote by matrix C the kj columns of A corresponding to the nonzero

positions of mj and m̂j be the reduced vector of mj containing only nonzeros. Then Amj = Cm̂j and

the idea of an adaptive approach is to augment C by new columns of A (i.e. increase nonzero positions

in mj) adaptively to better approximate mj .

To add one new column c to C, solve

σ+c = min
z∈Rkj , ξ∈R

‖Cz + ξc− ej‖22, (8)

where c is chosen from the remaining columns of A that intersect with nonzeros’ indices of [C ej ] or

the residual rj = ej − Cmj ; see [33]. A simplified version of (8) is the following approximation (taking

z = m̂j)

σapprox
+c = min

ξ∈R
‖Cz + ξc− ej‖22 = min

ξ∈R
‖ξc− rj‖22, (9)

as seen in [35]. The two minimisation problems can be directly solved to give the following [8]

σ+c = σ − (cT rj)2

ρ2
, σapprox

+c = σ − (cT rj)2

‖c‖22

respectively, where σ = ‖rj‖2, [C c] = [Y y]
(

R r
0 ρ

)
with C = Y

(
R
0

)
the reduced QR decomposition.

Once the least square problem is solved, a new approximation to mj is obtained and the adaptive

procedure is repeated if the new residual is not small enough with regard to (7).

Remark 1 Theoretically minimizing σ+c finds a better approximation than from σapprox
+c , for the pur-

pose of solving (3), at each step. However, there is no guarantee of a global minimizer for the essentially

multi-dimensional problem — a situation somewhat mimicking the weakness of the steepest descent method

[32]. The multi-dimensional problem may be posed as follows:

σ+C = min
C; mj

‖Cmj − ej‖22 = min
ck∈(a1,...,an);ξk∈R

‖c1ξ1 + · · ·+ c`ξ` − ej‖22

where ak is column k of A, ξk’s are the elements of m̂j (i.e. the nonzero components of mj) and hence

C is chosen from any ` (a prescribed integer) columns of matrix A.

Practically, for a class of sparse matrices, solving the multi-dimensional minimisation is not neces-

sary so both methods shown above (based on one-dimensional minimisation) can work well. But it is

not difficult to find surprising examples. For instance, the adaptive SPAI method of [35] applied to a

triangular matrix A will not find a strictly triangular matrix as an approximate inverse unless one re-

stricts the sparsity pattern (§3); of course, FSAI type methods will be able to return a triangular matrix

4



as an approximation for this case. Although it remains to find an efficient way to solve the above multi-

dimensional problem, narrowing down the choice for pattern S is regarded as an effective approach to

speeding up the basic SPAI methods of type (3).

3 Acceleration using a priori patterns

We now discuss methods of selecting the initial sparsity pattern S. For a class of problems, specifying

suitable a priori patterns for the approximate inverse removes the need for any adaptive procedure

and thus dramatically speeds up the SPAI preconditioner construction. With such a pattern, solving

(3) yields the required preconditioner M1. This is possible for many useful problems. For matrices

arising from discretization of a class of partial differential equations, the so-called powers of sparsified

matrices (PSM) methods have been found to give satisfactory and desirable patterns S [21, 12, 47].

For matrices from boundary integral operators, the near neighbour patterns have been shown to be

satisfactory [16, 17, 19, 50]. The analytical approach of near neighbours is different from but related to

the algebraic approach of PSM.

The theoretical basis for PSM patterns comes from analytical expressions for A−1 in terms of A. From

the Cayley-Hamilton theorem, A satisfies the characteristic polynomial

An + an−1A
n−1 + · · ·+ a1A + a0I = 0. (10)

Hence, if A is non-singular, A−1 ∈ span(I, A, A2, . . . , An−1). Alternatively if ‖A‖ < 1, we may also

use the geometric series to expand A−1 = [I − (I −A)]−1 in terms of powers of (I −A). These algebraic

considerations may also be explained by using the graph theory [21] and have recently been explored in

[12, 21, 36].

Suitable scaling of a matrix is important before sparsification. In [21], symmetric scaling by diagonal

matrices is suggested. However our experience has shown that a better scaling method is the permutation

and scaling method by Duff and Koster [28]. In one particular variant, matrix A is permuted and scaled

from both sides so that the product of diagonal entries of the resulting matrix is the largest. For instance,

the following matrix A on the left is permuted and scaled to B on the right

A =




100 20
20 2 −40

2 1 3
5 2


 , B =




1
1
2

1
3
2


 A




1
10

1
2

1
10

1
3


P =




1 1
1 −1 1

2
1
20 1 1
3
8 1


 ,

which is more amenable to sparsification by global thresholding, where P = [e1 e3 e2 e4] is a permutation

matrix. In fact, one can verify that the most important elements (the largest but always including the

diagonals) of both matrix B−1 and B3 follow some similar pattern S.

However, even for a sparsified matrix A0 (out of A), the number of nonzeros in its high powers can

grow quickly to approach n2 so in practice only low powers of A0 can usually be used. Use ‘drop’ to
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denote a sparsification process; then A0 = drop(A) and powers are given by Ai = Ai+1
0 or, if less nonzeros

are desired, Ai = drop(Ai−1A0). Finally the sought pattern S is taken from the graph of Ai. In this

paper we shall mainly use i = 3.

4 A two-level preconditioner

We now formulate our two-level preconditioner in details and specify the types of problems that are

dealt with. Assume that a SPAI preconditioner M1 from solving (3) has been obtained for (1) and the

preconditioned system is thus

AM1y = b. (11)

However we further assume that the right preconditioner M1 = [m1, . . . ,mn] does not satisfy (7) in k of

its n columns. That is to say,

AM1 = I + E1 + E2, (12)

where ‖E2‖F is very small and I +E1, not necessarily small, is an elementary Gauss-Jordan matrix with

k dense columns. Here we are concerned with the case of k being relatively small with respect to n. In

the extreme case of k = 0, M1 is already effective and so there is no need to improve M1 while the case

of k ≈ n implies that M1 is ineffective and our method will not apply; then further study is required.

Under the above assumptions, we propose to further precondition (12) by M2 = (I + E1)−1

M2AM1y = M2b, x = M1y. (13)

This new preconditioner will be effective if the preconditioned matrix

M2AM1 = (I + E1)−1(I + E1 + E2) = I + (I + E1)−1E2

is a smaller perturbation of I than (12). For a simple case, we can establish this statement more precisely

(see Appendix 2). Such smaller perturbations would help to accelerate an iterative solver [18, 29, 43].

Note that after a symmetric permutation, the Gauss-Jordan type matrix (I + E1) can be written in

the lower block triangular form

P1(I + E1)PT
1 =

(
A1 0
A2 I2

)
= T (14)

where A1 is a matrix of size k × k, A2 of (n − k) × k and I2 of (n − k) × (n − k). The exact inverse of

this lower block triangular matrix T is

T−1 =
(

A−1
1 0

−A2A
−1
1 I2

)
so M2 = PT

1 T−1P1.

This suggests that we only need to approximate the small k × k matrix A−1
1 in order to work out our

level 2 preconditioner — the left n × n approximate inverse M2 in (13). The overall algorithm can be

summarized as follows
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Algorithm 1

1. For a tolerance tol and integer nzmax (the maximal number of nonzeros allowed per column such

that nzmax = NNZ/n), implement the SPAI algorithm, solving (3), to obtain the right precondi-

tioner M1.

2. Identify and record the k sparsified columns of AM1 that do not satisfy the tolerance tol.

3. Identify the permutation matrix P1 and compute the k × k SPAI approximation for A1.

4. Compute the left preconditioner M2.

5. Solve the preconditioned system (13) by a Krylov subspace method.

Here sparsification of AM1 is important as it usually much less sparse than A and M1 alone, and hence

A1 is implicitly sparsified. Note that in the adaptive SPAI approaches (Section 2), AM1 is available (as

by-products) via the monitoring residual vectors rj . Hence our algorithm can be coupled naturally with

an adaptive SPAI approach. With non-adaptive SPAI, AM1 has to be approximated.

It should also be remarked that, instead of the two-sided scheme of (13), we can similarly propose the

second level preconditioner M2 differently (from the right)

AM1M2y = b, x = M1M2y. (15)

All other discussions will follow as well. However we shall mainly study (13) in this work.

We now discuss the issue of complexity and the choice of A1. Clearly the size k of matrix A1 is an

indication of the level of difficulties in approximating A−1 by M1. In most cases where our algorithm is

particularly useful, we can assume that k is small. Then we may use a direct solver to compute A−1
1 .

Thus the additional cost of using M2 is simply O(k3) + O(nk2) ≈ 2k3 + 2nk2. However for large k (e.g.

k = n), we simply call an existing SPAI solver for the second time and the overall cost may be doubled.

As with all SPAI preconditioners, in practical realizations, one should use parallel versions of Algorithm

1 to gain efficiency. Note that one may also take M2 = A−1
1 directly in (14) and implement the level two

preconditioner y = M2x from solving A1y = x, and this gives rise to a mixed preconditioning strategy.

One simplification of A1 may result from selecting at most a fixed number kfix columns of AM1 that

have the largest least-squares-errors ‖Amj − ej‖2. For example, set kfix ≤ nzmax. However for some

extremely hard problems, this selection may not be sufficient.

Another possibility is to reset these identified n− k columns of M1 to unit vectors and then AM1 =

I + E1 + E2 becomes more pronounced as a Gauss-Jordan decomposition. A drawback of this approach

is a possible scaling problem associated with matrix AM1 thus complicating the further approximation

by M2.
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For a general method, leaving out the issue of complexity, we expect a continuing repeated application

of the SPAI idea will asymptotically generate an identity matrix

· · ·M2t · · ·M2AM1 · · ·M2t−1 · · · = I.

In this case, intermediate products are not sparsified. Thus one envisages that a difficult matrix problem

may need more than 2 preconditioning matrices. However we have not investigated this possibility further.

Remark 2 In finding the approximate inverse of matrix (14), one might apply a SPAI method to the

whole matrix (instead of applying to submatrix A1). In this case, care must be taken to ensure that the

zero positions in the right (n − k) columns are not filled otherwise the level 2 preconditioner M2 will

not be effective. Note also that this idea becomes less attractive for formulation (15) because the second

preconditioner may not be allowed to contain dense columns for the sake of efficiency.

Although we are concerned with unsymmetric systems, similar two-level preconditioning strategies

based on triangular preconditioners for FSAI in solving symmetric systems have been suggested in [38,

39, 41]. There the choice of the second preconditioner M2 is made to approximate a banded form of

MT
1 AM1. There does not appear to exist any two-level work generalizing the FSAI formulation (6) for

unsymmetric systems.

5 Numerical experiments

We shall present numerical results that demonstrate the improvements obtained using the new two level

preconditioner (Algorithm 1) on the standard SPAI method. The test examples are selected as those

benchmark problems that either cannot be solved by the standard SPAI methods or can only be solved

with relatively low efficiency. Of course, for many other problems that can already be solved efficiently

by the standard SPAI methods, our method would give the same results. It should be remarked that

some of test problems may equally solved efficiently (or even more efficiently) by other other methods

e.g. the ILU type method. However we shall not compare with such methods, in order to focus on our

main idea of improving SPAI.

We select two sets of experiments. In Set 1, we aim to compare the new two-level Algorithm 1 with

other methods. In Set 2, we further test the effectiveness of our new algorithm for larger systems. Let

` denote the maximal number of nonzero elements allowed in preconditioner M1. We shall compare our

new method with two existing methods

1. STD — the standard SPAI method searching adaptively for the pattern S [35] for ` = nzmax.

2. PSM — the SPAI method using a priori patterns S [21] of A3 = A3
0 for ` = 2 nzmax.

3. New I — our new Algorithm 1 that selects at most ` = nzmax columns of AM1 in constructing
M2 as discussed in Remark 2.
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4. New II — our new Algorithm 1 that selects all columns of AM1 (that are difficult to approximate
by M1) in constructing M2. Again ` = nzmax for M1.

Here the total number of nonzeros in preconditioner M1, NNZ, is specified as a multiple of nnz(A) —

the number of nonzeros in A. We then take nzmax = NNZ/n. For our new methods (New I, II), in

computing M1, we have allowed the first NNZ/2 nonzero positions defined by PSM patterns with the

remaining ones by adaptive searches.

The following benchmark problems are selected1

Data Set 1

1. The NUCL set from modelling an advanced gas cooled reactor core:
nnc261 with n = 261 and nnz(A) = 1500, and nnc666 with n = 666 and nnz(A) = 4044.

2. gemat11 from the optimal power flow problem with n = 4929 and nnz(A) = 33185.

3. pores3 from the reservoir simulation with n = 532 and nnz(A) = 3474.

4. sherman3 from the 3D oil reservoir challenge matrices with n = 5005 and nnz(A) = 20033.

5. gre1107 from the computer systems simulation with n = 1107 and nnz(A) = 5664.

6. The finite element matrices from graded L-shapes:
lshp1009 with n = 1009 and nnz(A) = 3937, lshp2614 with n = 2614 and nnz(A) = 10297.

7. The finite element modelling using a penalty formulation:
fidap023 with n = 1409 and nnz(A) = 43481, and fidapm33 with n = 2353 and nnz(A) = 23145.

Data Set 2

1. Finite element analysis of cylindrical shells: s2rmt3m1 with n = 5489 and nnz(A) = 112505.

2. The finite element modelling using a penalty formulation:
fidapm15 with n = 9287 and nnz(A) = 98519.

3. Fluid flow modelling in a driven cavity: e30r0500 with n = 9661 and nnz(A) = 306356 for a
moderate Reynolds number of 500.

4. Structural engineering examples:
bcsstk17 with n = 10974 and nnz(A) = 219812, and bccstruc2 with n = 11948 and nnz(A) = 80519.

Without any scaling, SPAI preconditioner (3) cannot solve some of the above examples [21, 33, 35].

Therefore in our experiments, all these matrices are pre-processed by the Duff and Koster algorithm [28]

(for minimizing the diagonal products) before constructing the preconditioners. We shall take tol = 0.2 in

solving (7) specifying NNZ individually later in order to be as consistent with the literature as possible

and the precise ratio (‘NNZ ratio’) between the number of nonzeros in M1 and nnz(A) will be displayed

for each case. The selected two Krylov subspace solvers are the conjugate gradients squared (CGS)

method by Sonneveld and the bi-conjugate gradients stabilized (BiCGStab) method by van de Vorst [49].

A third solver, the restarted generalized minimal residual method GMRES(k) [45], is also used and the

convergence behaviour is found similar to CGS and BiCGStab; the results of all three solvers are shown

for Set 2 examples.
1All such benchmark data are publicly available from Matrix Market http://math.nist.gov/MartixMarket/. Most exam-

ples in Set 1 have been attempted before in [35, 33, 21, 22] and were considered hard examples to precondition. Even with
scaling by algorithm from [28], these problems are still hard for SPAI methods; see [7].
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Table 1: Test of robustness with Set 1 examples using the CGS solver. Here the symbol
√

indicates that
the new methods are worthwhile, the symbol © shows that all methods are not very efficient to deal with
a hard example, and • means that the standard method is already sufficient. Note the “NNZ ratio” for
PSM is twice as large.

Test Size PSM STD New I New II NNZ Final
Problem n Steps CPU Steps CPU Steps CPU Steps CPU ratio Assess
nnc261 261 56 180 25 192 38 168 53 135 16.5 ©
nnc666 666 268 42 91 43 314 20 276 35 3.0 ©
pores3 532 59 29 88 32 54 6 43 15 3.9 •

sherman3 5005 175 414 116 229 174 190 140 294 4.2 •
lshp1009 1009 77 30 34 19 37 8 18 21 2.4 •
lshp2614 2614 51 115 226 105 60 48 28 133 2.9 •
gemat11 4929 97 643 * * 107 345 65 611 0.5

√
fidap023 1409 43 2166 83 1361 43 1195 28 2909 5.0

√
fidapm33 2353 * * * * * * 19 357 6.7

√

Table 2: Test of robustness with Set 1 examples using the BiCGStab solver. Here the symbol
√

indicates
that the new methods are worthwhile, the symbol © shows that all methods are not very efficient to deal
with a hard example, and • means that the standard method is already sufficient. Note the “NNZ ratio”
for PSM is twice as large.

Test Size PSM STD New I New II NNZ Final
Problem n Steps CPU Steps CPU Steps CPU Steps CPU ratio Assess
nnc261 261 27 120 21 192 27 128 22 135 16.5 ©
nnc666 666 261 41 71 43 248 20 244 33 3.0 ©
gre1107 1107 374 42862 * * * * 258 34275 175 ©
pores3 532 39 29 59 32 42 6 38 15 3.9 •

sherman3 5005 104 410 93 229 119 188 95 293 4.2 •
lshp1009 1009 76 30 28 19 33 8 16 21 2.4 •
lshp2614 2614 42 115 * * 48 48 25 133 2.9

√
gemat11 4929 88 644 * * 90 346 52 611 0.5

√
fidap023 1409 39 2166 71 1361 39 1195 25 2910 5.0

√
fidapm33 2353 125 399 * * 152 251 17 357 6.7

√

Table 3: Test of improvements with Set 2 examples using three iterative methods. Here GM denotes the
GMRES(20) method and BCG the BiCGStab method. The symbol

√
indicates that the New method

is worthwhile and • means that the standard method is already sufficient. Size k defines the level two
preconditioner M2 and “Flop+” shows the percentage increase in flops in computing M2.

Test Size STD New I NNZ Final
Problem n GM CGS BCG GM CGS BCG Size k Flop+ ratio Assess
s2rmt3m1 5489 98 30 27 14 17 6 543 3% 1.5

√
fidapm15 9287 90 54 38 59 33 25 3154 22% 1.0

√
e30r0500 9661 * * 95 140 60 48 2167 15% 4.2

√
bcsstk17 10974 19 12 9 11 5 4 448 0.06% 3.0

√
bccstruc2 11948 6 3 2 6 3 2 5 0.0007% 4.5 •
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In Tables 1 and 2, we have compared the performance of PSM (Chow method [21]) and STD (a

standard SPAI implementation as in [35]) with our new two-level preconditioners New I and New II. Here

“Steps” refer to the number of iterations of an iterative method required to reduce the relative residual

to below 10−8 and “CPU” the total cpu seconds taken from Sun Sparc-2 workstation running Matlab

5.3 where “*” indicates no convergence within 500 steps (in other experiments we also observed similar

results from using Fortran). We display by ‘NNZ ratio’ the number of nonzeros allowed for M1 (for STD

and New I); the number of nonzeros for M for PSM is allowed to be larger (up to twice as large) in

order for ‘Steps’ to be comparable. The overall NNZ for New II is only slightly more than New I as

preconditioner M2 is not contributing much to the NNZ and the CPU increase.

We have used three symbols in Tables 1–3 to remark on the final assessment of a test case. As

commented in the Tables, the symbol
√

indicates the cases where our new methods are particularly

useful i.e. when the inaccuracy in AM1 = I is reflected more predominantly in a small number of

columns.

From Tables 1-2, overall, the method New I (when it converges) is the fastest while New II is the most

robust as it has less failures. One also observes that the number of convergence steps is mostly (but not

always) in proportion to CPU timings. However it is still important for the new methods to achieve fast

convergence and robustness. We shall compare flops counts for larger systems next.

In Table 3, we show the numerical results from three solvers: GMRES(20), CGS and BiCGstab for

Set 2 examples. We here demonstrate that the proposed two-level preconditioner (New I) is effective even

for larger systems. Notice that ‘NNZ ratio’ is not large in order to save storage and size k (that defines

the level two preconditioner M2 in (13)) is not large; consequently there is only marginal increase in flop

counts and the speedup is then reflected in smaller “Steps” in Table 3. One can observe from Table 3

that the new two-level preconditioner has improved on the standard SPAI algorithm (STD), although

STD (with the help of scaling by [28]) is already adequate for some examples (e.g. example bccstruc2).

As remarked several times, scaling is important for using SPAI methods. In other experiments, we

have tried to skip the pre-processing step using the Duff and Koster algorithm [28] and found that none

of the Set 1 problems can be solved effectively by the methods shown above. The main reason is that

most columns in M1 cannot approximate those of A−1 well (this is the case when global thresholding

cannot identify an effective pattern or large elements of A−1). This observation is consistent with other

findings [21, 7, 33], suggesting that suitable scaling is essential for approximate inverse preconditioners.

Of course, without preconditioning, all examples presented cannot be solved by Krylov subspace solvers.

Combined with sparsification ideas [11, 12], our preconditioner is applicable to dense matrix problems.

Another possibility would be to combine with deflation techniques such as [13] or to develop two level
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methods for FSAI type preconditioners (6). Further work in these directions is under way.

6 Conclusions

We have presented a new two-level preconditioner of the approximate inverse type for accelerating iter-

ative solution of large linear systems. We connected a sparse approximate inverse with a Gauss-Jordan

decomposition and suggested a secondary preconditioner. While our new preconditioning strategy has

been shown to have much improved existing preconditioners for a class of problems where SPAI ineffec-

tiveness is due to a small number of columns in AM1, there is much scope to develop better methods for

other types of problems. We hope the new insight gained here may assist further research work on the

topic. One avenue could be even better scaling methods and another idea may be a combination with

compression techniques (e.g. wavelets [25, 14]) to force a matrix that has a dense inverse to possess a

desirable sparse approximate inverse, before constructing such sparse preconditioners.
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Appendix 1 –
The Gauss-Jordan decomposition and sparse approximation

The SPAI preconditioner M in (3) approximates A−1 well if the underlying algorithm is successful in

achieving ‖Amj − ej‖2 ≤ ε. In general, the preconditioner M satisfies

AM = I + E = F (16)

where F is approximately a special matrix with E having mostly zero columns except some dense ones.

This matrix F resembles the product of some selected factoring matrices Fj from the Gauss-Jordan

decomposition of matrix A [3, 20] and [37, p.50] where

FnFn−1 · · ·F1A = I (17)

and each Fj is an identity matrix with its column j containing a dense vector. We shall call a sparse

matrix that is of the form of F = I + E, in (16), an elementary Gauss-Jordan matrix of order k if E has

k dense columns.

One can verify that the inverse of an elementary Gauss-Jordan matrix retains the sparsity pattern of

the original matrix. Moreover the essential work in computing the exact inverse of an elementary Gauss-
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Jordan matrix of order k is determined by the inverse of a k×k submatrix. We remark that, although the

Gauss-Jordan method is well known [30, 37], the Gauss-Jordan matrix decomposition implicitly defined

is less commonly used. It is not difficult to see that any matrix A can be decomposed into a product of

elementary Gauss-Jordan matrices whose orders can be summed up to n (assuming no partial pivoting is

needed or some pre-permutation has been carried out). For instance, a simple form follows from rewriting

(17) as (Fj . . . F1)A(Fn . . . Fj+1) = I or A = (F−1
n . . . F−1

j+1)(F
−1
j . . . F−1

1 ), where each bracket defines an

elementary Gauss-Jordan matrix.

We give a simple example for n = 6 to demonstrate the partial decomposition of a matrix A using an

order 4 elementary Gauss-Jordan matrix M2 (to yield an order 2 matrix M−1
1 ):

M2A =




0.230 −0.174 0.126 −0.082 0 0
−0.103 0.284 −0.207 0.043 0 0
−0.058 −0.050 0.218 −0.073 0 0
−0.069 0.065 −0.138 0.237 0 0
−0.517 0.297 −0.035 −0.909 1 0
−0.058 −0.925 0.218 0.052 0 1







7 4 1 2 5 4
5 7 5 2 6 3
4 3 7 3 5 6
3 1 3 6 5 2
5 1 2 6 4 2
4 6 3 1 5 5




= M−1
1 =




1 0 0 0 0.329 0.993
0 1 0 0 0.371 −0.716
0 0 1 0 0.136 0.783
0 0 0 1 0.539 −0.435
0 0 0 0 −1.520 −1.200
0 0 0 0 0.511 3.410




=




1 0 0 0 0.134 −0.244
0 1 0 0 0.356 0.336
0 0 1 0 0.014 −0.225
0 0 0 1 0.450 0.287
0 0 0 0 −0.746 −0.263
0 0 0 0 0.112 0.333




−1

.

In the notation of (14), using P1 = [e5 e6 e1 e2 e3 e4] would permute the above matrix to a lower block

triangular form. Here one observes that M2AM1 = I and the last matrix and its inverse are related

through the smaller submatrix

[ −1.520 −1.200
0.511 3.410

]
=

[ −0.746 −0.263
0.112 0.333

]−1

.

This observation prompts us to consider situations where matrix AM1 (or M2A) is approximately an

elementary Gauss-Jordan matrix. If this is the case, we may naturally employ another elementary

Gauss-Jordan matrix M2 (or M1) to achieve M2AM1 ≈ I. We shall use this idea to propose a two-

level preconditioner based on preconditioner M from (3) for (1).

Appendix 2 – Proof of a smaller upper bound

Here we show that our new method (13) defines a better preconditioner than the standard SPAI method

(12) for the simple case of ε ≤ ‖E1‖F < 1 and ‖E2‖F < ε < 1 with ‖E1‖F + ‖E2‖F < 1.

First of all, the standard SPAI preconditioner (12) satisfies

‖AM1 − I‖F = ‖E1 + E2‖F ≤ ‖E1‖F + ‖E2‖F .

13



Now from ‖E1‖F < 1, we have ‖(I + E1)−1‖F ≤ 1/(1 − ‖E1‖F ). Then our new preconditioner (13)

satisfies

‖M2AM1 − I‖F = ‖(I + E1)−1E2‖F ≤ ‖E2‖F

1− ‖E1‖F
.

As ‖E1‖F + ‖E2‖F < 1, from

‖E2‖F

1− ‖E1‖F
−

(
‖E1‖F + ‖E2‖F

)
= ‖E1‖F

‖E1‖F + ‖E2‖F − 1
1− ‖E1‖F

< 0,

One sees that our new method (13) defines a better preconditioner than the standard SPAI method (12).

For instance, if ‖E1‖F = 0.9, ‖E2‖F = 0.05, then

‖AM1 − I‖F ≤ ‖E1‖F + ‖E2‖F = 0.95, ‖M2AM1 − I‖F ≤ ‖E2‖F

1− ‖E1‖F
= 0.026.
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