
c©(2007) Journal of Scientific Computing.

A Nonlinear Multigrid Method For Total Variation

Minimization From Image Restoration

Ke Chen∗ and Xue-Cheng Tai†

Abstract

Image restoration has been an active research topic and variational formulations are particularly
effective in high quality recovery. Although there exist many modelling and theoretical results,
available iterative solvers are not yet robust in solving such modelling equations. Recent attempts
on developing optimisation multigrid methods have been based on first order conditions. Different
from this idea, this paper proposes to use piecewise linear function spanned subspace correction to
design a multilevel method for directly solving the total variation minimisation. Our method appears
to be more robust than the primal-dual method [14] previously found reliable. Supporting numerical
results are presented.
Keywords: Image restoration, total variation, regularisation, subspace correction, multilevel solvers.
AMS subject class: 68U10, 65F10, 65K10.

1 Introduction

Given a bounded domain Ω ⊂ Rd, d = 1, 2, 3, · · · , we often need to solve problems which can be written
in the following general form

min
u

(∫

Ω

|∇u|dx +
∫

Ω

f(u)dx

)
. (1)

The equivalent problem to the above minimization is the Euler-Lagrange equation

−∇ ·
(∇u

|∇u|
)

+ f ′(u) = 0, (2)

which is a nonlinear partial differential equation (PDE), also known as a curvature equation [28]. The
application of problems (1) and (2) ranges from image processing including noise removal [31, 25, 26, 8],
segmentation [17, 22], deblurring [4], inverse problems [16] to interface motion driven by mean curvature
[30, 28]. Owing to huge number of applications involved with models (1) and (2), the demand for new and
fast solvers for these problems is equally huge. In this paper, we present a nonlinear multigrid method
for efficiently solving (1).

In the literature the following methods have been used to solve the equation (2):

(i) The fixed point iteration method [1, 40, 43, 44, 41, 42]: Once the coefficients 1/|∇ū| are fixed at a
previous iteration ū, various iterative solver techniques have been considered [43, 44, 12, 10, 9, 24].
There exist excellent inner solvers but the outer solver can be slow. Further improvements are still
useful.

∗Department of Mathematical Sciences, University of Liverpool, Peach Street, Liverpool L69 7ZL, UK. Email:
k.chen@liverpool.ac.uk. Web: http://www.liv.ac.uk/∼cmchenke [for correspondence]

†Department of Mathematics, University of Bergen, Bergen, Norway. Email: xue-cheng.tai@uib.no. Web:
http://www.mi.uib.no/∼tai

1

(ii) The explicit time marching scheme [31, 29]: It turns the nonlinear PDE into a parabolic equation
before using an explicit Euler method to march in time to convergence. The method is quite reliable
but often slow.

(iii) The primal-dual (PD) method [14, 15, 4]: It solves for both the primal and dual variable together
in order to achieve faster convergence with the Newton method (and a constrained optimisation
with the dual variable). There does not appear to exist any multilevel version and also the inner
solvers can have a convergence problem if the problem dimension gets large and β gets small.

As shown in [32], a converging multigrid method (MGM) can be much faster than methods of type (i)
and (ii). In some cases, the MGM is also faster than the PD method (iii). The algorithms proposed in
this paper behave similarly to [32] but, unlike [32], are not parameter dependant.

The MGM is one of the most powerful numerical methods for solving linear and nonlinear elliptic
problems [46, 38, 39], although the method is known to be less robust for either case with highly discon-
tinuous coefficients [45]. As for the curvature equation (2), several attempts have been made to develop
MGM to solve it, c.f. [41, 9, 32, 2]. However, the success so far is limited. The main problem is that
the nonlinear diffusion coefficient 1/|∇u| can be highly oscillatory or degenerate (e.g. having large values
close to infinity). Recently in [18, 23], the linear algebraic multigrid method [33] was adapted for solving
the above PDE in each (outer) step of a fixed iteration while [32] attempted to use the standard multigrid
methods with a non-standard and somewhat global smoother. As for solving (1) directly by MGM, the
main obstacle to address is how to design the crucial coarse grid minimization problems for correction as
no operator equations are directly available. Several related approaches, c.f. [3, 34, 5, 27], tried to design
such coarse grid problems by using first order conditions (similar to using (2) to measure residuals).
However, the convergence of this kind of methods for certain nonlinear problems is not as good as for
linear problems [18, 23, 32, 20]. Several authors [36, 38, 37, 35] have studied the combined approach of
MGM ideas and domain decomposition methods (DDM) (interpreted as subspace correction techniques)
for some optimisation problems. Although it is proved that efficiency of DDM and MGM for a class of
nonlinear problems is as good as for linear elliptic problems, there do not appear to exist any extensive
uses of this approach for optimisation problems. Moreover, problem (1) is beyond the class of problems
that were previously studied.

In this paper, we shall propose a nonlinear multigrid method for solving (1) based on subspace
correction techniques. The essential idea is to use nonlinear smoothers for the subproblems which respect
the minimization problem in order to reduce the energy functional. For the nonlinear problem (1), we
shall demonstrate numerically that the efficiency of the schemes can be as good as for linear problems.
Thus we may summarise our contributions of this work as follows:

a) we apply the subspace correction idea to design a nonlinear multigrid, as opposed to the geometric
multigrid methods that were proposed [3, 34, 5, 27] based on regularising (2).

b) the efficiency of the proposed algorithms is high: O(N log N) where N is the total degree of freedom.

c) the proposed algorithms are not parameter dependant.

d) as an inner-outer iteration procedure, our methods respect the nonlinear nature in the outer iteration
in contrast to linearisation techniques.

The rest of the paper is organised as follows. In Section 2, we introduce the general subspace correction
methods for convex functional minimisation. However we note that the theory does not cover the problem
type (2). In Section 3, we detail our proposed multilevel algorithms for problem (2) and present some
preliminary analysis. We present numerical experiments in Section 4 for solving both the one-dimensional
and two-dimensional image denoising problems. Finally in section 5, we discuss some conclusions and
future work.

2

2 The space decomposition algorithms

Consider a general minimization problem over a reflexive Banach space V :

min
v∈V

F (v) (3)

where F is a strongly convex cost functional. Assume that the space V has been decomposed into a sum
of smaller subspaces, i.e.

V = V1 + V2 + · · ·+ Vm. (4)

This means that for any v ∈ V , there exists vi ∈ Vi such that v =
∑m

i=1 vi. Then the idea employed by
[35, 36, 37, 38] is to repeatedly solve the subspace minimisation of the type

min
v∈Vi

F (v(0) + v)

where v(0) denotes a current approximation. The convergence of such methods requires F (v) to be
Lipschitz which is not satisfied by (1); it was not clear whether this kind of methodology will work for
(1). Also this methodology differs from [3, 34, 5, 27] on one major aspect: here we minimize the same
functional on all levels while the other methods minimize a modified functional on coarse levels.

Following previous studies [35, 36, 37, 38], two types of subspace correction methods can be derived
based on (4), namely the parallel subspace correction (PSC) method and the successive subspace correc-
tion (SSC) method, as simple generalisations of the methods for operator equations [46]. The parallel
subspace correction method can be described as follows.

Algorithm 1
Choose an initial value u(0) ∈ V and relaxation parameters γi > 0 such that

∑m
i=1 γi ≤ 1.

1. For ` ≥ 0, if u(`) ∈ V is defined, then find p
(`)
i ∈ Vi in parallel for i = 1, 2, · · · ,m such that

F
(
u(`) + p

(`)
i

)
≤ F

(
u(`) + vi

)
, ∀vi ∈ Vi. (5)

2. Set

u(`+1) = u(`) +
m∑

i=1

γip
(`)
i , (6)

and go to the next iteration.

The successive subspace correction method can be described as follows:

Algorithm 2 Choose an initial value u(0) ∈ V .

1. For ` ≥ 0, since u(`) ∈ V is defined, find u(`+i/m) = u(`+(i−1)/m) + p
(`)
i with p

(`)
i ∈ Vi sequentially

for i = 1, 2, · · · ,m such that

F
(
u(`+(i−1)/m) + p

(`)
i

)
≤ F

(
u(`+(i−1)/m) + vi

)
, ∀vi ∈ Vi. (7)

2. Go to the next iteration.

The classical Gauss-Seidel and Jacobi relaxation methods and the modern DDM and MGM can all
be interpreted as space decomposition algorithms. In order to reveal the relation between MGM and
space decomposition, one can use finite element spaces. Similar explanations can also be given for finite
difference approximations. For a given domain Ω, we assume that the finite element partition T of Ω
is constructed by a successive refinement process. More precisely, T = TJ for some J > 1, and Tj for
j ≤ J are a nested sequence of quasi-uniform finite element partitions, i.e. Tj consist of finite elements

3

Tj = {τ i
j} of size hj such that Ω = ∪iτ

i
j for which the quasi-uniformity constants are independent of j

and τ l
j−1 is a union of elements of {τ i

j}. We further assume that there is a constant γ < 1, independent
of j, such that hj is proportional to γ2j . In Fig. 1 and Fig. 2, we plot the basis functions and the refined
meshes for a domain in one and two dimensions. For the two dimensional case, a finer grid is obtained by
connecting the midpoints of the edges of the triangles of the coarser grid, with T1 being the given coarsest
initial triangulation, which is quasi-uniform. In this example, γ = 1/

√
2. We can use much smaller γ

in constructing the meshes, but the convergence will be slower. Corresponding to each finite element

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

Figure 1: Basis functions and the mesh for one dimensional multigrids

partition Tj , a finite element space Mj can be defined by

Mj = {v : v|τ ∈ P1(τ), ∀ τ ∈ Tj},

where P1 denotes the space of all piecewise linear elements (the basis functions are as illustrated in Fig. 1

4

Level k = 1 Vk
i
, k=1, i=1

Level k = 2 Vk
i
, k =2, i =1,2,...9

Level k = 3 Vk
i
, k =3, i =1,2,...49

Level k = 4 Vk
i
, k =4, i =1,2,...225

Figure 2: Basis functions and the mesh for two dimensional multigrids

and Fig. 2). Each finite element space Mj is associated with a nodal basis, denoted by {φi
j}nj

i=1 satisfying

φi
j(x

k
j) = δik

where {xk
j }nj

k=1 is the set of all nodes of the elements of Tj . Associated with each of such a nodal basis
function, we define an one dimensional subspace as follows

V k
j = span (φk

j).

Letting V = MJ , we have the following simple space decomposition:

V =
J∑

j=1

nj∑

k=1

V k
j . (8)

Each subspace V k
j is one dimensional and thus the subproblem (7) is easy to solve.

We remark that the above decomposition (8) is not an orthogonal (direct) sum in general. It has more
basis functions than the hierarchical basis [46, 19]. It is the hierarchical nature of such decompositions that
drives a multilevel minimization algorithm. Without multilevels, the simple decomposition V =

∑n1
k=1 V k

1

defined on the single level j = 1 (though leading to a relaxation method) is not suitable because it is
known that relaxations alone cannot reach a global minimizer [6, 13].

3 Image restoration algorithms using the total variation model

We now consider how to adapt the above methodology for solving (1).

5

For a given noisy image z defined on the domain Ω = [0, 1] × [0, 1], one of the most well-known
restoration models is the Rudin-Osher-Fatimi (ROF) total variation (TV) model [31] which is to take F

in (3) to be

F (u) = α

∫

Ω

√
u2

x + u2
y dx +

1
2

∫

Ω

‖Ku− z‖2 dx, (9)

where ∇u = (∂u
∂x , ∂u

∂y) = (ux, uy) and K is a known operator. As the TV term |∇u| is non-differentiable,
one often replaces the above by a regularized functional

F (u) = α

∫

Ω

√
u2

x + u2
y + β dx +

1
2

∫

Ω

‖Ku− z‖2 dx, (10)

as done in [41, 14, 32] and almost all multilevel methods. In this paper, we are concerned with fast solution
of this non-regularised model (9) in the denoising case with K = I. The minimizer of (9) is taken as
the denoised image. We note that a recent study [7] demonstrates that there are many advantages to
transform (9) to a dual formulation; we expect to generalize our MGM to this dual model in the near
future.

For problem (9), we shall explain the details in using Algorithm 2 for multigrid decomposition (8).
Note that all the subspaces in the multi-dimensional decomposition (8) are one dimensional. Thus, the
subproblems (7) are essentially trying to solve the following one dimensional minimization problem:

min
c∈R

F (w + cφk
j), (11)

where w = u(`+(i−1)/m) ∈ V and φk
j is the basis function over the jth level at the kth node. As F is

convex, c ∈ R is a minimizer of (11) if and only if it satisfies
∫

Ω

[
α
∇(w + cφk

j) · ∇φk
j√

|∇(w + cφk
j)|2 + β

+ (w + cφk
j − z)φk

j

]
dx = 0, (12)

where one noticed that we have included a regularising parameter β for the local problem (11). Although
we do not have to solve (11) this way, it turns out that the resulting method is not very sensitive to β

unlike (10).
The key observation is that each of our local minimisation problems has only one degree of freedom

(i.e. one dimensional). To solve this nonlinear equation for c ∈ R, we may use the fixed point iteration
(e.g. as in [1]), i.e. start with an c(0) = 0 and recursively get c(`) from

∫

Ω

[
α
∇(w + c(`+1)φk

j) · ∇φk
j√

|∇(w + c(`)φk
j)|2 + β

+ (w + c(`+1)φk
j − z)φk

j

]
dx = 0. (13)

It is easy to see that

c(`+1) =
bk
j − ak

j (w)
ak

j (φk
j)

, bk
j =

∫

Ω

(z − w)φk
j dx and

ak
j (v) =

∫

Ω

[
α

∇v · ∇φk
j√

|∇(w + c(`)φk
j)|2 + β

+ vφk
j

]
dx, (14)

where ` ≥ 0 (global iteration), j = 1, . . . , J (all levels) and k = 1, . . . , nj (level j). It is easy to see
that ak

j (φk
j) > 0 so the iteration will not break down. As w is a function over the fine mesh, much

reformulation will be done in integration for efficiently obtaining ak
j (w) and ak

j (φk
j) as shown below. The

iteration for (14) is stopped when |c(`+1)− c(`)|/|c(`)| ≤ τinner. Numerical experiments will show that the
convergence rate is nearly independent of τinner. Normally, just carrying out one or two iterations for
(12) is sufficient to obtain required results. Regarding complexity, we note that the domain integration
in (13) and (14) does not present complications because the basis function φk

j is only defined locally (as
with finite elements). This is addressed more precisely next.

6

3.1 The algorithm with Ω ∈ R
Firstly we consider the case Ω ∈ R associated with signal processing. Note that φk

j (on level j = 2 and
at node k = 2) may be illustrated by Figure 3. We wish to simplify the functional as much as possible

Figure 3: The one dimensional basis function φk
j with • showing its height – on the coarse level j = 2

and at a middle node k = 2 (top plot) and at end nodes (bottom plot). Here © defines the finest level,
∆ refers to the first coarse level and ¤ to the second coarse level.

1

0

0.25

0.5

0.75

1

Piecewise linear update of c (middle element)

1

0

0.25

0.5

0.75

1

Piecewise linear update of c (end elements)

by using the compact support of φk
j . As mentioned before, the parameter β is only introduced later for

local minimization. (In the following, where boundary basis functions are involved, the usual adjustment
in indices associated with summation is assumed.)

In the discrete setting for one dimensional problems, the cost functional (9) is (assuming α and F

absorb the uniform step length ∆x = ∆y = h from here onwards)

F (u) = α
n−1∑

i=1

|D+
x ui|+ 1

2

n∑

i=1

(ui − zi)2

where n is the total number of nodes, D+
x (also later D+

y) is the standard forward finite difference
operator. Let Ωk

j be the support set of φk
j and Ω̄k

j be its closure. Corresponding to Ωk
j , we define

Ik
j = {i| xi ∈ Ωk

j ∩ Θ} and Īk
j = {i| xi ∈ Ω̄k

j ∩ Θ} with Θ being the set of the nodal points for the
discretization. It is clear that we can localize the contribution of Ik

j

F (u) =


α

∑

i∈[1,n]\Īk
j

|D+
x ui|+ 1

2

∑

i∈[1,n]\Ik
j

(ui − zi)2


 +


α

∑

i∈Īk
j

|D+
x ui|+ 1

2

∑

i∈Ik
j

(ui − zi)2




= F̃ k
j (u) + α

∑

i∈Īk
j

|D+
x ui|+ 1

2

∑

i∈Ik
j

(ui − zi)2, (15)

where F̃ k
j contains all terms not overlapping with the support of φk

j . Our task now is the following: given
an initial guess w ≈ u, how to improve w.

Our idea is to look for u = w + cφk
j for the best c ∈ R. Recall that the above functional F (u) is

defined on the finest level so it is necessary to localize the formulation by collecting terms involving c ∈ R
only (see (12)). Let w = [w1, . . . , wn]T and vi = φk

j (xi). In the above functional (15), substitute u by

7

w + cφk
j and then combine terms involving c:

F (w + cφk
j) = F̃ k

j (w) + α
∑

i∈Īk
j

|D+
x wi + cD+

x vi|+ 1
2

∑

i∈Ik
j

(wi − zi + cvi)2

= F̃ k
j (w) + α

∑

i∈Īk
j

|D+
x wi + cD+

x vi| +
1
2

[
s
(
c2 − 2cz∗ + z∗2

)
+

∑

i∈Ik
j

z̄2
i − z∗2s

]

= F k
j (w) + α

∑

i∈Īk
j

|D+
x wi + cD+

x vi| +
s

2
(c− z∗)2, (16)

where z̄ = z − w, F k
j (w) = F̃ k

j (w) +
[∑

i∈Ik
j

z̄2
i − z∗2s

]
/2 does not involve c (ignored in subsequent

minimisation),
s =

∑

i∈Ik
j

v2
i and z∗ =

∑

i∈Ik
j

viz̄i/s.

Therefore in 1D, solving (11) for c ∈ R is equivalent to solving

min
c∈R

[
α

∑

i∈Īk
j

|D+
x wi + cD+

x vi| +
s

2
(c− z∗)2

]
,

and (with β added locally) the following

min
c∈R

J(c), J(c) =
[
α

∑

i∈Īk
j

√(
D+

x wi + cD+
x vi

)2 + β +
s

2
(c− z∗)2

]
. (17)

Further with c(0) = 0, implementing (13) and (14) for equation (17) leads to the iterations

[
α

∑

i∈Īk
j

|D+
x vi|2√(

D+
x wi + c(`)D+

x vi

)2 + β
+ s

]
c(`+1) =

[
sz∗ − α

∑

i∈Ik
j

D+
x wiD

+
x vi√(

D+
x wi + c(`)D+

x vi

)2 + β

]
, for ` = 0, 1, 2, · · · . (18)

In summary, our algorithm proceeds as follows.

Algorithm 3 Let the signal domain Ω = [0, 1] be discretized with J levels. Start from the finest level
j = 1 with the initial guess w = z:

(1) On level j, compute z̄ = z − w first.

(2) For each k = 1, . . . , nj:
First work out s and z∗ and then solve the local coarse problem by iterating (18) until the

relative (dynamic) residual is less than τinner.
Add the correction in the (built-in) interpolation step: w = w + cφk

j (x).

(3) If j < J , set j := j + 1 and continue with Step (1). If j = J , check whether the relative (dynamic)
residual is less than τouter; if yes, exit with u = w as the solution or otherwise continue with Step
(1) with j = 1.

3.2 The algorithm with Ω ∈ R2

Secondly we can apply the same argument of simplification to the image case with Ω ∈ R2, where we note
that a 2D basis function φk

j (similar to Figure 3) may be illustrated by Figure 4. That is, the terms in the

8

Figure 4: The two dimensional basis function φk
j (on the coarse level j = 3 and at the center node k.

Note on the right plot, only the weights v` along a diagonal, as in (19), are shown.) Here ♦ defines the
outer boundary of the 2D basis function, © shows the nodes where the corresponding weights are 1/4,
¤ shows the nodes where the corresponding weights are 1/2, . shows the nodes where the corresponding
weights are 3/4 and the central node ♦ defines the weight of 1.

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9
Piecewise linear update of c

1 2 3 4 5 6 7 8 9
0

5

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Piecewise linear update of c

functional F (w + cφk
j), c ∈ R, from (11) may again be grouped and simplified according to the compact

support of φk
j . Similar to the 1D case in (16), the values of the 2D basis function may be denoted by

matrix v, which takes the values

v =




0 0 0 0 0 0 0 0 0
0 1

4
1
4

1
4

1
4 0 0 0 0

0 1
4

1
2

1
2

1
2

1
4 0 0 0

0 1
4

1
2

3
4

3
4

1
2

1
4 0 0

0 1
4

1
2

3
4 1 3

4
1
2

1
4 0

0 0 1
4

1
2

3
4

3
4

1
2

1
4 0

0 0 0 1
4

1
2

1
2

1
2

1
4 0

0 0 0 0 1
4

1
4

1
4

1
4 0

0 0 0 0 0 0 0 0 0




(19)

for the example of j = 3 and b = bj = 4 (as in Figure 4) and when we zoom in the neighborhood of
index k (as v is actually a global quantity with a compact support). Let the quantities v, Ωk

j , Ik
j and Īk

j

be defined in a similar way as for 1D problems with k = (k1, k2). In the discretized setting, we have

F (u) = α
n∑

`1=1

m∑

`2=1

√
(D+

x u`1,`2)2 + (D+
y u`1,`2)2 +

1
2

n∑

`1=1

m∑

`2=1

(u`1,`2 − z`1,`2)
2

= F̃ k
j (u) + α

∑

k1,k2∈Īk
j

√
(D+

x uk1,k2)2 + (D+
y uk1,k2)2 +

1
2

∑

(k1,k2)∈Ik
j

(uk1,k2 − zk1,k2)
2, (20)

where F̃ k
j contains all terms not overlapping with the support of φk

j . Similar to the 1D case, we are ready
to simplify F (w + cφk

j) to reveal the simplified minimisation for c ∈ R by grouping other unrelated terms
(to c) into F . The result is the following (refer to (15)):

F (w + cφk
j) = F (w + cv) = F̃ k

j (w) +

α
∑

(k1,k2)∈Īk
j

√
(D+

x wk1,k2 + cD+
x vk1,k2)2 + (D+

y wk1,k2 + cD+
y vk1,k2)2

+
1
2

∑

(k1,k2)∈Ik
j

(z̄k1,k2 − cvk1,k2)
2,

= F k
j (w, z̄, v) + α

∑

(k1,k2)∈Īk
j

Tk1,k2(c) +
s

2
(c− z∗)2, (21)

9

where all three quantities F̃ , z̄ = z − w and F do not involve c,

z∗ =
∑

(k1,k2)∈Ik
j

z̄k1,k2vk1,k2

s
, s =

∑

(k1,k2)∈Ik
j

v2
k1,k2

, and

Tk1,k2(c) =
√
|D+

x (wk1,k2 + cvk1,k2)|2 + |D+
y (wk1,k2 + cvk1,k2)|2.

To solve the local problem (21), we re-define

Tk1,k2(c) =
√
|D+

x (wk1,k2 + cvk1,k2)|2 + |D+
y (wk1,k2 + cvk1,k2)|2 + β,

adding a small parameter β > 0. Then omitting all non-essential details, we find that the updating of
(14) or (13) in the discretized setting for a 2D problem proceeds as follows:

[
α

∑

(k1,k2)∈Īk
j

|D+
x vk1,k2 |2 + |D+

y vk1,k2 |2
Tk1,k2(c(`))

+ s

]
c(`+1) =

[
sz∗ − α

∑

(k1,k2)∈Īk
j

D+
x wk1,k2D

+
x vk1,k2 + D+

y wk1,k2D
+
y vk1,k2

Tk1,k2(c(`))

]
, for ` = 0, 1, 2, · · · . (22)

Putting all the steps together, we give the following

Algorithm 4 Let the image domain Ω = [0, 1]× [0, 1] be discretized with J levels. Start from the finest
level j = 1 with the initial guess w = z over n1 ×m1 = n×m pixel points:

(1) On level j, compute z̄ = z − w first.

(2) For each index k = (k1, k2) with k1 = 1, . . . , nj and k2 = 1, . . . , mj,
First work out s and z∗ and then solve the local coarse problem by iterating (22) until the

relative (dynamic) residual is less than τinner.
Add the correction in the (built-in) interpolation step: w = w + cφk

j (x).

(3) If j < J , set j := j + 1 and continue with Step (1). If j = J , check whether the relative (dynamic)
residual is less than τouter; if yes, exit with u = w as the solution or otherwise continue with Step
(1) with j = 1.

Here, on level j, nj = (n− 1)/2j−1 + 1 and mj = (m− 1)/2j−1 + 1 define nj ×mj basis functions.
Finally we briefly discuss the complexity issue. For linear problems, the cost per iteration for the

multigrid iteration is typically O(DOF) where DOF is the total number of degrees of freedom. For our
nonlinear problems, the cost per iteration by our Algorithms 3 and 4 is O(DOF log(DOF)). To verify this
result, we may consider the 2D case with DOF = N = mn. Then the size of the set Īk

j is 2j−1×2j−1 while
the size of the set Ik

j is less than that of Īk
j . Computing z̄ requires N flops (floating point operations). For

each k on level j, computing z∗ and s requires 4bj flops (with bj = 4j−1) so the total number of flops for
level j is 4bjnjmj ≈ 4N . Let t steps be needed for a typical inner iteration which corresponds to about
32bjtnjmj ≈ 32tN . Hence over all J levels, the number of flops is (N +4N +32tN)J = O(N log N) since
max(J) ≤ log2 min(m,n) = O(N log N).

4 Numerical algorithms and experiments

To demonstrate the effectiveness of our Algorithms 3 and 4, denoted by MG below, we now present some
experimental results. We remark that the above proposed algorithms have not been applied to the image
minimisation problem (2) before. It is pleasing to see some good results for the first time.

10

Table 1: Residual information for Problem 3 with up to 100 MG cycles.
Problem Size Levels MG cycles Residual

17× 17 5 87 8.5E-10
33× 33 6 100 5.9E-10
65× 65 7 93 5.0E-10

129× 129 8 87 1.1E-11
257× 257 9 77 2.2E-11

We shall first test the algorithms’ effectiveness by solving a few image denoising problems in both 1D
and 2D. Then we experiment on the dependence of the convergence of the proposed multigrid algorithm
on image sizes and algorithm parameters. Finally we experiment on the influence of the inner Picard
fixed point iterations (12) on the overall convergence performance. As we see, the method is not sensitive
to the choice of problem sizes and accuracy of the inner Picard type fixed point iterations. Finally we
compare and remark on the advantages of our algorithms over the popular method of [14]. In a simple
word, our algorithms (being multilevel) are fast, robust and reliable.

4.1 Test problems and results

We shall consider 4 signal denoising problems as shown in Figure 5 and another 4 image denoising problems
as shown in Figure 7. The signal-to-noise ratio (SNR) is taken as 10 (for smaller SNR all iterations will
be less, as expected). The iterative method will be stopped whenever the relative dynamic residual
‖u(`) − u(`−1)‖2/‖u(`)‖2 < τouter for a prescribed tolerance τouter. Then ` will be the number of outer
iteration steps (or cycles). There is another prescribed tolerance τinner which is to control how accuracy
the iterations should be in the solution of the local minimisation (11). Here we take τinner = τouter = 10−3

and β = 10−4 for the regularising parameter. The processed results by our algorithm is shown in Figure
6 (for N = 4097) and Figure 8 (for N ×N = 257 × 257) respectively, where the symbol ¤ refers to our
algorithm while the symbol × the method of [14]. Clearly one observes that our method converges quite
quickly and gives a result which is not distinguishable from the result of [14].

4.2 Test of convergence of the method

When β 6= 0, the convergence theory developed in [35, 38] may be invoked to establish a convergence
result of our algorithms. Here we hope to give some numerical tests to demonstrate the convergence
behaviour for the specific example of Problem 3 with α = 15. First we show in Figure 9 the convergence
history of MG residuals for τ = τouter = 10−10 and n = 129. Second we show some more residual
information in Table 1 for various n with up to 100 steps of the MG method to achieve ‖r‖ ≤ τ = 10−10.
Clearly convergence slows downs at we approach the machine accuracy but it is not much depending on
n. Hence in the following tests, we shall restrict ourselves to a larger τ .

To test further on the sensitivity of the method on problem size n, it is of interest to investigate
any dependence of the overall algorithm convergence as the problem sizes increase (n in 1D signals and
n × n in 2D images). In Table 2, we fix both tolerances τinner, τouter and vary the problem size to see
how many convergence steps are needed. Clearly one observes that the convergence of our method is not
much affected by n, especially for the 2D problems. For the 1D case, the convergence patterns become
clear and the number of steps (i.e. MG cycles) approaches a constant as n increases.

4.3 Sensitivity to the inner fixed point iterations

We next address how crucial the inner nodal solver is for the overall algorithm. To this end, we fix the
problem size n and the tolerance τouter. Table 3 shows the results obtained for the selected test problems
in 1D and 2D from varying the inner solver tolerance τinner within the range of a value below τouter to

11

Table 2: Test of dependence of the problem sizes (n in 1D and n× n in 2D): ‘Dim’ denotes ‘Dimension’,
‘Prob’ stands for ’Problem number’, ‘Levels’ indicates the “levels used in the multilevel algorithm” and
‘Steps’ the “number of multilevel cycles’. Here τ = 10−3, β = 10−4. Clearly there is no strong dependence.
Here the Problem numbers refer to Figure 5 for 1D and Figure 7 for 2D.

Dim Prob Size Levels Steps Prob Size Levels Steps
1D 1 65 6 25 2 65 6 17

129 7 11 129 7 11
257 8 7 257 8 5
513 9 8 513 9 6
1015 10 5 1015 10 4
2049 11 4 2049 11 4
4097 12 3 4097 12 4
8193 13 4 8193 13 4
16385 14 3 16385 14 4
32769 15 3 32769 15 4
65537 16 3 65537 16 4

1D 3 65 6 9 4 65 6 34
129 7 7 129 7 23
257 8 8 257 8 18
513 9 5 513 9 12
1015 10 5 1015 10 8
2049 11 5 2049 11 6
4097 12 5 4097 12 4
8193 13 4 8193 13 4
16385 14 4 16385 14 4
32769 15 4 32769 15 4
65537 16 4 65537 16 4

2D 1 33×33 5 6 2 33×33 5 5
65×65 6 6 65×65 6 5

129×129 7 6 129×129 7 5
257×257 8 6 257×257 8 5

2D 3 33×33 5 6 4 33×33 5 5
65×65 6 6 65×65 6 5

129×129 7 6 129×129 7 5
257×257 8 6 257×257 8 5

12

Table 3: Test of dependence of the accuracy of the inner nodal solver (n = 8193 and Levels=13 in 1D and
n× n = 257× 257 and Levels= 8 in 2D): ‘Levels’ indicates the “levels used in the multilevel algorithm”
and ‘Steps’ the “number of multilevel cycles’. Here τ = β = 10−4 and τinner is the tolerance used for each
nodal relaxation solver (note: the minimal number of relaxation steps is 1). Clearly there is no strong
dependence. Here again, the Problem numbers refer to Figure 5 for 1D and Figure 7 for 2D.

Dimension Problem τinner Steps Problem τinner Steps
1D 1 10−5 8 2 10−5 4

10−4 8 10−4 4
10−3 8 10−3 4
10−2 8 10−2 4
10−1 8 10−1 4
10−0 8 10−0 4
10+1 8 10+1 4

1D 3 10−5 5 4 10−5 11
10−4 5 10−4 11
10−3 5 10−3 11
10−2 5 10−2 11
10−1 5 10−1 11
10−0 5 10−0 11
10+1 5 10+1 11

2D 1 10−5 10 2 10−5 5
10−4 10 10−4 5
10−3 10 10−3 5
10−2 8 10−2 5
10−1 8 10−1 5
10−0 10 10−0 5
10+1 11 10+1 5

2D 3 10−5 6 4 10−5 7
10−4 6 10−4 7
10−3 6 10−3 7
10−2 6 10−2 7
10−1 6 10−1 7
10−0 6 10−0 8
10+1 6 10+1 9

another much larger value. Clearly the overall multilevel method is not much affected. Note that for the
cases associated with using the largest tolerance τinner = 10, the number of inner iterations is mostly one
and hence the inner solver is far from convergence and yet the outer iterations can converge. This latter
observation is somewhat related to the inner-outer iteration control as shown in [21] and adopted in the
algorithm of [14]. It is possible to work out an appropriate formula for τinner.

4.4 Sensitivity of the parameters α and β

There are two general issues here. Firstly one cares about whether or not α and β affect the convergence
of a method. Secondly for difficult choices of α and β, one desires for a remedial solution. Here we mainly
test the former as our algorithms are not sensitive to such parameter changes. As for the latter question
with other sensitive methods, one should consider the parameter continuation idea as used and discussed
in [18, 47].

We take two test examples as shown in Figs. 10 and 11. We have done the following experiments
(for the tolerance of τ = 10−3) in Table 4. Here we measure the restoration qualitatively by the peak

13

Table 4: Test of dependence of the parameters α and β
Problem α β MGM cycles PSNR

3 1.25 10−12 6 20.67
2.50 6 21.31
5.00 6 22.53
10.0 6 24.38
20.0 8 24.68

3 20.0 10−4 8 24.68
10−8 8 24.68
10−12 8 24.68
10−16 8 24.68
10−20 8 24.68

5 1.88 10−12 6 21.12
3.75 6 22.26
7.50 6 24.56
15.0 6 27.94
30.0 9 28.75

5 30.0 10−4 8 28.69
10−8 8 28.70
10−12 8 28.70
10−16 8 28.70
10−20 8 28.71

signal-to-noise ratio (PSNR) defined by (see e.g. [11])

PSNR(u,w) = 10 log10

2552

1
mn

∑
i,j(ui,j − wi,j)2

,

where wi,j and ui,j denote the pixel values of the restored and the original images respectively.
Clearly from Table 4, we observe that the convergence of Algorithm 4 is not significantly affected by

parameter changes. Evidently changing α leads to different restorations and hence the PSNR values as
expected.

One may wonder why our optimisation MG is less sensitive to the above parameters while the PDE
MG is more sensitive for the essentially same model (1). We believe that this is due to the PDE (2)
attempting to assign a normal at pixels where such geometrical information is not defined while the
optimisation does not require such assignments.

4.5 Comparisons with an established method

There are many aspects that could be compared with other methods. Here we choose to compare with
the well-known method (perhaps the best) of Chan-Golub-Mulet (CGM) [14] as other methods such as
the fixed point iterations and time marching schemes have been shown to be slower than a multigrid
method [32]. However our task of comparing with CGM becomes somewhat easier because the CGM
method ‘fails’ in 2 cases: (i) when the image size N becomes large (due to ill-conditioning); (ii) when
β ≤ 10−32 (due to singularity). Here (i), not (ii), may be fixable but no such work is available for the
primal-dual method. (However there exists important work of β-free methods [1, 7, 13]; of these the dual
method is the most well-known.) In either of these cases, our method would converge although the local
solvers take a few more iterations.

It may be of interest to show some results from parameter ranges where the CGM performs well: we
take β = 10−20 and 2 test examples in Figs. 10 and 11. Here we mainly compare the solution’s visual
quality and the PSNR values. As seen from Figs. 10 and 11, PSNR(uCGM) = 24.60 and PSNR(uMG) =
24.70 for problem 3, and PSNR(uCGM) = 28.27 and PSNR(uMG) = 28.74 for problem 4. Since the

14

PSNR values of the results from our algorithm are quite close to the CGM results, the restored images
are indeed indistinguishable.

For larger images, our MG method can solve problems 3 and 4 in a reasonable time (as seen below)
on a Sun-Blade 1000 with Matlab 6.5:

Problem N MGM cycles PSNR CPU
3 513 4 31.48 3165.6

1025 4 34.03 14478.0
4 513 4 30.16 4291.0

1025 4 33.09 14428.0

In contrast, CGM cannot be run because the memory requirement is too large.
Therefore our algorithm is evidently more robust (without having to concern about what parameters

to use) and being a multilevel method there is a scope to achieve even better performance with future
parallelization.

5 Conclusions

This paper has introduced a nonlinear multigrid method for solving curvature equations related to to-
tal variation minimization. The resulting algorithms are efficient but are different from the existing
optimisation multigrid methods in coarse level construction.

Numerical tests show that the convergence for the MGM algorithm is mesh independent for a large
range of α; however extremely large α may be tackled by using the continuation idea based on causality
as recommended by [47] and likewise extremely small β should be combined with the continuation step on
β as in [18]. The parameter β is used to control the width of the jumps and the smallest width is over one
mesh element. For most algorithms, β is chosen in this range but our algorithm offers mesh independent
convergence which is also not sensitive to the values of β. It is known that the CGM algorithm [14] is
rather robust with respect to α and β. For most of the experiments we have done, we need less than 10
outer iterations to get a result as nearly undistinguishable as the unigrid method [14]. In fact, the CGM
method fails to converge when we take β = 10−32 while our method converges. If we must take β = 0,
all we need to do is to replace our local minimisation solvers.

Acknowledgements

The first author wishes to thank the support of the Leverhulme Trust RF/9/RFG/2005/0482 for this
work.

References

[1] R. Acar and C. R. Vogel. Analysis of total variation penalty method for ill-posed problems. Inverse Probs.,
10:1217–1229, 1994.

[2] S. T. Acton. Multigrid anisotropic diffusion. IEEE Trans. Imag. Proc., 3 (3):280–291, 1998.

[3] E. Arian and S. Ta’asan. Multigrid one-shot methods for optimal control problems. ICASE technical report
No. 94-52, USA, 1994.

[4] P. Blomgren, T. F. Chan, P. Mulet, L. Vese, and W. L. Wan. Variational PDE models and methods for image
processing. In Research Notes in Mathematics, volume 420, pages 43–67. Chapman & Hall/CRC, 2000.

[5] A. Brandt. Multigrid solvers and multilevel optimization strategies. In J. Cong and J. R. Shinnerl, editors,
Multiscale Optimization and VLSI/CAD, pages 1–68. Kluwer Academic (Boston), 2000.

[6] J. L. Carter. Dual method for total variation-based image restoration, CAM report 02-13, UCLA, USA; see
http://www.math.ucla.edu/applied/cam/index.html. PhD thesis, University of California, LA, 2002.

[7] A. Chambolle. An algorithm for total variation minimization and applications. J. Math. Imag. Vis., 20:89–97,
2004.

15

[8] A. Chambolle and P.L. Lions. Image recovery via total variation minimization and related problems. Numer.
Math., 76 (2):167–188, 1997.

[9] R. H. Chan, T. F. Chan, and W. L. Wan. Multigrid for differential convolution problems arising from image
processing. In R. Chan, T. F. Chan, and G. H. Golub, editors, Proc. Sci. Comput. Workshop. Springer-Verlag,
see also CAM report 97-20, UCLA, USA, 1997.

[10] R. H. Chan, Q. S. Chang, and H. W. Sun. Multigrid method for ill-conditioned symmetric Toeplitz systems.
SIAM J. Sci. Comput., 19:516–529, 1998.

[11] R. H. Chan, C. W. Ho, and M. Nikolova. Salt-and-pepper noise removal by median-type noise detectors and
detail-preserving regularization. IEEE Trans. Image Proc., 14:1479–1485, 2005.

[12] R. H. Chan and C. K. Wong. Sine transform based preconditioners for elliptic problems. Numer. Linear
Algebra Applic., 4:351–368, 1997.

[13] T. F. Chan and K. Chen. On a nonlinear multigrid algorithm with primal relaxation for the image total
variation minimisation. Numerical Algorithms, 41:387–411, 2006.

[14] T. F. Chan, G. H. Golub, and P. Mulet. A nonlinear primal dual method for total variation based image
restoration. SIAM J. Sci. Comput., 20, (6):1964–1977, 1999.

[15] T. F. Chan and P. Mulet. Iterative methods for total variation restoration. CAM report 96-38, UCLA, USA;
see http://www.math.ucla.edu/applied/cam/index.html, 1996.

[16] T. F. Chan and X. C. Tai. Identification of discontinuous coefficient from elliptic problems using total
varaition regularization. SIAM J. Sci. Comput., 25 (3):881–904, 2003.

[17] T. F. Chan and L. Vese. Image segmentation using level sets and the piecewise-constant mumford-shah
model. UCLA CAM report CAM00-14, USA, 2000.

[18] Q. S. Chang and I. L. Chern. Acceleration methods for total variation-based image denoising. SIAM J. Sci.
Comput., 25:982–994, 2003.

[19] K. Chen. Matrix Preconditioning Techniques and Applications. Cambridge Monographs on Applied and
Computational Mathematics (No. 19). Cambridge University Press, UK, 2005.

[20] C. Frohn-Schauf, S. Henn, and K. Witsch. Nonlinear multigrid methods for total variation image denoising.
Comput Visual Sci., 7:199–206, 2004.

[21] C. T. Kelley. Iterative Methods for Solving Linear and Nonlinear Equations. SIAM publications, USA, 1995.

[22] A. Kenigsberg, R. Kimmel, and I. Yavneh. A multigrid approach for fast geodesic active contours. CIS
Report 2004-06, 2004.

[23] R. Kimmel and I. Yavneh. An algebraic multigrid approach for image analysis. SIAM J. Sci. Comput.,
24(4):1218–1231, 2003.

[24] Y. Y. Li and F. Santosa. A computational algorithm for minimizing total variation in image restoration.
IEEE Trans. Image Proc., to appear., 1996.

[25] M. Lysaker, A. Lundervold, and X. C. Tai. Noise removal using fourth-order partial differential equation
with applications to medical magnetic resonance images in space and time. IEEE Transactions on Image
Processing, 12 (12):1579–1590, 2003.

[26] F. Malgouyres. Minimizing the total variation under a general convex constraint for image restoration. IEEE
Trans. Imag. Proc., 11 (12):1450–1456, 2002.

[27] S. Nash. A multigrid approach to discretized optimisation problems. J. Opt. Methods Softw., 14:99–116,
2000.

[28] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Springer, 2003.

[29] S. Osher and A. Marquina. Explicit algorithms for a new time dependent model based on level set motion
for nonlinear deblurring and noise removal. SIAM J. Sci. Comput., 22(2):387–405, 2000.

[30] S. Osher and J. Sethian. Fronts propagating with curvature dependent speed: algorithms based on Hamilton-
Jacobi formulations. J. Comp. Phys., 79:12–49, 1988.

[31] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D,
60:259–268, 1992.

[32] J. Savage and K. Chen. An improved and accelerated nonlinear multigrid method for total-variation denoising.
Int. J. Comput. Math., 82 (8):1001–1015, 2005.

[33] K. Stuben. An introduction to algebraic multigrid, in Appendix A of [39]. Also appeared as GMD report 70
from http://www.gmd.de and http://publica.fhg.de/english/index.htm, 2000.

16

[34] S. Ta’asan. Multigrid one-shot methods and design startegy. Lecture note 4 of Von-Karmen Institute Lectures,
http://www.math.cmu.edu/∼shlomo/VKI-Lectures/lecture4, 1997.

[35] X. C. Tai. Rate of convergence for some constraint decomposition methods for nonlinear variational inequal-
ities. Numer. Math., 93:755–786, 2000. Available online at http://www.mi.uib.no/∼tai.

[36] X. C. Tai and M. Espedal. Rate of convergence of some space decomposition methods for linear and nonlinear
problems. SIAM. J. Numer. Anal., 35:1558–1570, 1998.

[37] X. C. Tai and P. Tseng. Convergence rate analysis of an asynchronous space decompostion method for convex
minimization. Math. Comp., 71:1105–1135, 2001.

[38] X. C. Tai and J. C. Xu. Global and uniform convergence of subspace correction methods for some convex
optimization problems. Math. Comp., 71:105–124, 2001.

[39] U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid. Academic Press, London, UK, 2000.

[40] C. R. Vogel. A multigrid method for total variation-based image denoising. In K. Bowers and J. Lund,
editors, Computation and Control IV, 20, Progress in Systems and Control Theory. Birkhauser, 1995.

[41] C. R. Vogel. Negative results for multilevel preconditioners in image deblurring. In M. Nielson et al, editor,
Scale-Space Theories In Computer Vision, pages 292–304. Springer-Verlag, 1999.

[42] C. R. Vogel. Computational methods for inverse problems. SIAM publications, USA, 2002.

[43] C. R. Vogel and M. E. Oman. Iterative methods for total variation denoising. SIAM J. Sci. Statist. Comput.,
17:227–238, 1996.

[44] C. R. Vogel and M. E. Oman. Fast, robust total variation-based reconstruction of noisy, blurred images.
IEEE Trans. Image Proc., 7:813–824, 1998.

[45] W. L. Wan, T. F. Chan, and B. Smith. An energy-minimizing interpolation for robust multigrid methods.
SIAM J. Sci. Comput., 21 (4):1632–1649, 2000.

[46] J. C. Xu. Iteration methods by space decomposition and subspace correction. SIAM Rev., 4:581–613, 1992.

[47] A. M. Yip and F. Park. Solution dynamics, causality, and critical behavior of the regularization parameter
in total variation denoising problems. CAM report 03-59, UCLA, USA (on-line), 2003.

17

Figure 5: The 1D test examples

1000 2000 3000 4000

0

1

2

3

4

5

1D TV problem P
1
 of size 4097

1000 2000 3000 4000

0

2

4

6

8

10

1D TV problem P
2
 of size 4097

1000 2000 3000 4000

−5

0

5

1D TV problem P
3
 of size 4097

1000 2000 3000 4000

0

5

10

15

20

1D TV problem P
4
 of size 4097

Figure 6: The 1D processed results with solutions from the two methods superimposed on each other: ¤
- the new multilevel algorithm and × - the primal-dual method [14].

1000 2000 3000 4000
−1

0

1

2

3

4

5

6

1D PL MG for TV P
1
 Steps=7 with α=40.970

1000 2000 3000 4000

0

2

4

6

8

10

1D PL MG for TV P
2
 Steps=5 with α=40.970

1000 2000 3000 4000

−5

0

5

1D PL MG for TV P
3
 Steps=4 with α=40.970

1000 2000 3000 4000
0

5

10

15

1D PL MG for TV P
4
 Steps=5 with α=40.970

18

Figure 7: The 2D test examples
2D TV problem P

1
 of size 257 x 257

50 100 150 200 250

50

100

150

200

250

2D TV problem P
2
 of size 257 x 257

50 100 150 200 250

50

100

150

200

250

2D TV problem P
3
 of size 257 x 257

50 100 150 200 250

50

100

150

200

250

2D TV problem P
4
 of size 257 x 257

50 100 150 200 250

50

100

150

200

250

Figure 8: The 2D multigrid restored results

2D PL MG for TV P
1
 Steps=5 with α=30

50 100 150 200 250

50

100

150

200

250

2D PL MG for TV P
2
 Steps=4 with α=25

50 100 150 200 250

50

100

150

200

250

2D PL MG for TV P
3
 Steps=3 with α=15

50 100 150 200 250

50

100

150

200

250

2D PL MG for TV P
4
 Steps=4 with α=30

50 100 150 200 250

50

100

150

200

250

19

Figure 9: Residual history for Problem 3 with n = 129

10 20 30 40 50 60 70 80

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Residual for P
3
: N=129, α=15 with 87 MG cycles

20

Figure 10: Comparison with the CGM method [14] for test example P3: α = 20 and β = 10−20

Observed z for P
3

50 100 150 200 250

50

100

150

200

250

PL MG result: Steps=3 with α=20.000

P
S

N
R

 =
 2

4.
70

50 100 150 200 250

50

100

150

200

250

CGM solution

P
S

N
R

 =
 2

4.
60

50 100 150 200 250

50

100

150

200

250

Original image

50 100 150 200 250

50

100

150

200

250

Figure 11: Comparison with the CGM method [14] for test example P5: α = 30 and β = 10−20

Observed z for P
5

50 100 150 200 250

50

100

150

200

250

PL MG result: Steps=3 with α=30.000

P
S

N
R

 =
 2

8.
74

50 100 150 200 250

50

100

150

200

250

CGM solution

P
S

N
R

 =
 2

8.
27

50 100 150 200 250

50

100

150

200

250

Original image

50 100 150 200 250

50

100

150

200

250

21

