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Abstract

Fast solution of the nonlinear partial differential equations (PDEs) arising from image restora-
tion is of practical importance. The standard multigrid methods do not work well, due to highly
discontinuous coefficients of the underlying nonlinear PDEs. In this paper, we present two related
global but linear smoothers that help the convergence of multigrid methods. Furthermore, the Krylov
acceleration technique is combined with the proposed multigrid method to improve the performance.
Numerical experiments are shown.
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1 Introduction

During recording and transmission an image will become contaminated with random noise; this is mod-

elled by the equation

z(x, y) = u(x, y) + n(x, y), x, y ∈ Ω (1)

where Ω is a bounded and open domain of R2 (usually a rectangle). Here z is a real function representing

the observed image, which in practice will only be known at certain discrete values of x and y, u is the

true image and n is an additive noise term. The recovery of the original image from the noisy observed

one is known as denoising.

The aim of a denoising process is to remove noise while preserving the main features of the original

image, most importantly its edges (an edge is a boundary where a jump in intensity occurs); this can be

achieved by the use of Tikhonov regularization with the Total-Variation (TV) regularization functional,

first introduced in 1992 by Rudin Osher and Fatemi [7]. Tikhonov regularization involves the minimization

of a penalized least squares functional

J(u) =
1
2
‖u− z‖22 + αR(u) (2)

where R is a regularization functional that penalizes against certain artifacts in the solution and α is a

regularization parameter that balances the need for a solution which is a good fit to the observed data

and one that is regular. Traditional regularization functionals penalized against non-smooth solutions

and therefore had the unfortunate effect of smudging edges in the original image, the TV regularization
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functional on the other hand allows solutions which are piecewise smooth and can therefore preserve

edges, it is defined as follows

TV (u) =
∫

Ω

|∇u|dxdy. (3)

Tikhonov regularization with this regularization functional results in the Euler-Lagrange equation

u− α∇.

( ∇u

|∇u|
)

= z. (4)

This equation is not well defined when |∇u| = 0 and so the TV functional is perturbed slightly by a small

positive parameter β

TVβ(u) =
∫

Ω

√
|∇u|2 + βdxdy (5)

which results in the Euler-Lagrange equation

u− α∇.

(
∇u√

|∇u|2 + β

)
= z (6)

with homogenous Neumann boundary condition ∂u
∂n = 0 at the boundary.

There are several iterative methods for solving (6). In [9], Vogel and Oman use a ”lagged diffusivity

fixed point iteration” in which a linear equation

uk+1 − α∇.

(
∇uk+1

√
|∇uk|2 + β

)
= z (7)

is solved at each step to obtain the new iterate uk+1 from the current iterate uk. The matrix (which

is dependant on uk) resulting from discretization of this equation is SPD. They use a preconditioned

conjugate gradient method with a multigrid preconditioner to solve the linear system at each step.

Newton’s Method has a small domain of convergence for this problem, particularly for small values of

the parameter β, and a continuation procedure on this parameter is required [4]. To overcome this, in [3],

Chan Golub and Mulet use a Primal-Dual Newton Method to solve (6). The Euler-Lagrange equation is

replaced by the equivalent system




−α∇.w + u− z = 0

w
√
‖∇u‖2 + β −∇u = 0

(8)

where

w =
∇u√

‖∇u‖2 + β
. (9)

The (u,w) system is linearized by an approximate Newton’s method and the inner linear iterations are

done using a preconditioned conjugate gradient method.

In [7], Rudin, Osher and Fatemi use an explicit time marching method to find the steady state of the

parabolic equation
∂u

∂t
= (u− z)− α∇.

(
∇u√

|∇u|2 + β

)
. (10)

More recently in [6], Marquina and Osher reduce the stability constraints on the time step for this method

by multiplying the right hand side of the equation by |∇u| in an improved scheme.
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In this paper we propose a non-linear multigrid method based on the full approximation scheme for

solving (6) using as a smoother the fixed point method with just a few steps of specially adapted Gauss-

Seidel relaxation applied to the linear equation at each step. In section 2 we review the usual discretization

and multigrid method and in section 3 we discuss our suggested smoothers for the nonlinear multigrid

algorithm with some Krylov acceleration technique considered in section 4. Finally in section 5 various

numerical results are presented.

2 A nonlinear multigrid method

In our work we assume Ω is a rectangular domain [a, b] × [c, d] and we discretize it in a cell centered

fashion, suitable for the finite difference method. If the observed image z is in the form of n×m values

each representing the light intensity at a pixel, then we split the domain into n ×m cells of size h × k

and place a grid point at the centre of each cell where h = (b−a)/n is the grid spacing in the x-direction

and k = (d− c)/m is the grid spacing in the y-direction. The grid point (i, j) is located at

(xi, yj) =
(

a +
(2i− 1)h

2
, c +

(2j − 1)k
2

)
, 1 ≤ i ≤ n, 1 ≤ j ≤ m. (11)

The value of z at grid point (i, j) is denoted by zi,j . The Euler-Lagrange equation (6) is discretized using

a finite difference scheme. The equation at grid point (i, j) is

ui,j − α


δ−x

h


 δ+

x ui,j/h√
(δ+

x ui,j/h)2 + (δ+
y ui,j/k)2 + β


 +

δ−y
k


 δ+

y ui,j/k√
(δ+

x ui,j/h)2 + (δ+
y ui,j/k)2 + β





 = zi,j ,

(12)

where

δ±x ui,j = ± (ui±1,j − ui,j) , δ±y ui,j = ± (ui,j±1 − ui,j) , (13)

which can be rewritten as

ui,j − αh


δ−x


 δ+

x ui,j√
(δ+

x ui,j)2 + (λδ+
y uij)2 + βh


 + λδ−y


 λδ+

y ui,j√
(δ+

x ui,j)2 + (λδ+
y uij)2 + βh





 = zij (14)

where

αh = α/h, βh = h2β and λ = h/k (15)

with boundary condition

ui,0 = ui,1, ui,m+1 = ui,m, u0,j = u1,j , un+1,j = un,j . (16)

The full approximation scheme (multigrid method). Denote by

Nhuh = zh (17)

the nonlinear system of equations described by (14)-(16) where uh and zh are grid functions on an n×m

cell-centered rectangular grid Ωh with grid spacing (h, k). Denote by Ω2h the n/2 × m/2 cell-centered

grid which results from standard coarsening of Ωh i.e the cell-centered grid with grid spacing (2h, 2k). If
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vh is an approximation to the solution of (17) define the error in vh by eh = uh − vh and the residual by

rh = zh −Nhvh recall also that these quantities are related by the nonlinear residual equation:

Nh(vh + eh)−Nhvh = rh (18)

If eh is smooth it can be well approximated on Ω2h. Any iterative method which smooths the error on the

fine grid can therefore be improved by the use of coarse grid correction, in which a coarse grid analogue

of the residual equation is solved (solution on the coarse grid being less expensive than on the fine grid)

to obtain a coarse grid approximation of the error, which is then transferred back to the fine grid to

correct the approximation vh. This is known as a two-grid cycle and with recursive application can be

extended to a multigrid method. Below we define restriction and interpolation operators for transferring

grid functions between Ωh and Ω2h before introducing the smoothing method we use for our multigrid

method.

Restriction.

I2h
h vh = v2h (19)

where

v2h
i,j =

1
4
(vh

2i−1,2j−1 + vh
2i−1,2j + vh

2i,2j−1 + vh
2i,2j) 1 ≤ i ≤ n/2, 1 ≤ j ≤ m/2 (20)

Interpolation.

Ih
2hv2h = vh (21)

where
vh
2i,2j = 1

16 (9v2h
i,j + 3(v2h

i+1,j + v2h
i,j+1) + v2

i+1,j+1h)

vh
2i−1,2j = 1

16 (9v2h
i,j + 3(v2h

i−1,j + v2h
i,j+1) + v2

i−1,j+1h)

vh
2i,2j−1 = 1

16 (9v2h
i,j + 3(v2h

i+1,j + v2h
i,j−1) + v2

i+1,j−1h)

vh
2i−1,2j−1 = 1

16 (9v2h
i,j + 3(v2h

i−1,j + v2h
i,j−1) + v2

i−1,j−1h)

1 ≤ i ≤ n/2, 1 ≤ j ≤ m/2

(22)

Choice of smoothers. We tried several iterative methods as smoothers for our multigrid method.

Initially we tried using a Gauss-Seidel Newton method one step of which involves cycling through each

grid point (i, j) in turn and substituting into (14) current values of the approximation corresponding to

all grid points except (i, j) to give a nonlinear equation in one variable. Several steps of Newton method

are applied to this nonlinear equation to update the approximation at (i, j). However we found that this

method was divergent. This confirms the well-known fact that the standard multigrid method does not

perform well for the TV equation [2].

3 Improved smoothers and the overall multigrid algorithm

We have found two less standard smoothers that work well with the standard nonlinear multigrid method

[8], although the second smoother will be recommended.

Smoother S1. In order to explain this method, we rewrite (14) as

ui,j − αh((D(u)i,j(ui+1,j − ui,j)−D(u)i−1,j(ui,j − ui−1,j))
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+λ2 (D(u)i,j(ui,j+1 − uij)−D(u)i,j−1(ui,j − ui,j−1))) = zi,j (23)

where

D(u)i,j = ((δ+
x ui,j)2 + (λδ+

y ui,j)2 + βh)−1/2. (24)

Note that D(u)ij , D(u)i−1,j and D(u)i,j−1 all contain uij terms. Then, for each grid point (i, j) as well

as substituting current values of the approximation at points other than (i, j) into (23) we also substitute

current values of the approximation at (i, j) into the D terms; this gives us a linear equation in one

variable to solve in order to update the approximation at (i, j). The algorithm for updating vh using this

method is given below:

vh ← S1(vh, zh,maxit, tol)

for i = 1 : n

for j = 1 : m

for iter = 1 : maxit

v̄h ← vh

update vi,j by solving the linear equation

vi,j − αh((D(v̄)i,j(v̄i+1,j − vi,j)−D(v̄)i−1,j(vi,j − v̄i−1,j))+

λ2 (D(v̄)i,j(v̄i,j+1 − vij)−D(v̄)i,j−1(vi,j − v̄i,j−1))) = zi,j

if |vi.j − v̄i,j | < tol stop

end

end

end

Note that because the linear equation, used to update vi,j , involves v̄i,j at each grid point we perform

up to maxit inner iterations (stopping if the modulus of the difference between vi,j and v̄i,j is less than

some tolerance). This method can ensure a convergent nonlinear multigrid method; however we found

that the next smoother based on a global linearization of (23) is more efficient.

Smoother S2. This smoother is similar to the lagged diffusivity fixed point method of Vogel and

Oman [9]. In this method the system of nonlinear equations is linearized globally at each step by

evaluating Di,j for all (i, j) using the current approximation, several steps of Gauss-Seidel relaxation are

then applied to the resulting linear system. We found that while exactly solving the linear system at

each step seems to give a method with no smoothing properties, applying just a few steps of Gauss-Seidel

to the linear system results in a method that while obviously slower to converge than the fixed point

method, can be used as a smoother in a nonlinear multigrid method. The algorithm is given below:

vh ← S2(vh, zh, it)

for i = 1 : n

for j = 1 : m

evaluate

D(vh)ij = ((δ+
x vi,j)2 + (λδ+

y vi,j)2 + β)−1/2

end

5



end

Perform Gauss-Seidel steps on linear system

wh = vh

for iter = 1 : it

for i = 1 : n

for j = 1 : m

w̄ ← w

wi,j ← zi,j + αh(D(vh)i,j(w̄i+1,j + λ2w̄i,j+1 + D(vh)i−1,jw̄i−1,j + λ2D(vh)i,j−1w̄i,j−1)
1 + αh((1 + λ2)D(vh)i,j + D(vh)i−1,j + λ2D(vh)i,j−1)

end

end

end

vh ← wh

The two-grid algorithm. We now define a two-grid method to facilitate the presentation for our

nonlinear multigrid method.

Algorithm 1 (Two-grid)

(1) Apply ν1 steps of smoothing method to Nhuh = zh with initial guess vh

vh ← S2ν1(vh, zh, it)

(2) Compute residual
rh = zh −Nhvh

(3) Restrict residual and approximation
r2h = I2h

h rh

v2h = I2h
h vh

(4) Solve
N2hw2h = r2h + N2hv2h

(5) Compute coarse grid error
e2h = w2h − v2h

(6) Interpolate error
eh = Ih

2he2h

(7) Correct fine grid approximation
vh ← vh + eh

(8) Apply ν2 steps of smoothing method to Nhuh = zh with initial guess vh

vh ← S2ν2(vh, zh, it).

Here N2h is the coarse grid analogue of Nh i.e the operator resulting from discretization of the Euler-

Lagrange equation on Ω2h, in other words the equation at a grid point of Ω2h is (14) with αh replaced

by α2h = αh/2 and βh replaced by β2h = 4βh.

The multigrid algorithm. A multigrid V-cycle is obtained by replacing step (4) in Algorithm 1

with a recursive application of this coarse grid correction procedure, with the exact solution of a residual
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equation taking place on some coarsest grid ΩLh (L is a power of 2). To solve on the coarsest grid ΩLh

we use the primal-dual Newton method [3]. A recursive definition of the V-cycle is given below:

vhf ← NLMV hf (vhf , Nhf , zhf )

where hf denotes the mesh size for the finest grid Ωhf .

Algorithm 2 (Nonlinear multigrid) The one-step V-cycle method is defined for vh ← NLMV h(vh, Nh, zh):

(1) If Ωh =coarsest grid, solve Nhuh = zh using primal-dual Newton method and stop.
Else vh ← S2ν1(vh, zh, it)

(2) v2h = I2h
h vh

v̄2h = v2h

z2h = I2h
h (zh −Nhvh) + N2hv2h

v2h ← NLMV 2h(v2h, N2h, z2h)

(3) vh ← vh + Ih
2h(v2h − v̄2h)

(4) vh ← S2ν2(vh, zh, it).

A complexity analysis. The main cost of our multigrid method is the cost of the smoothing steps. In

our experiments we have found that it is optimal to use 3 inner Gauss-Seidel steps for each smoothing

step, this makes the cost of one smoothing step ≈ 90N , as the cost of evaluting Di,j for each grid point is

9 flops and the cost of one Gauss-Seidel step is 26 flops per grid point, where N = nm is the total number

of grid points. On Ω2h there are 1/4 the number of grid points that there are on Ωh and in general if

p = 2l there are p−2 = (1/4)l as many grid points on Ωph as there are on Ωh. An upper bound on the

cost of one V-cycle is therefore

lim
l→∞

(ν1 + ν2)90N

l∑
n=0

(1/4)n = 90(ν1 + ν2)N
(

1
1− 1/4

)
= 120(ν1 + ν2)N, (25)

which gives rise to the expected O(N) complexity if a small and finite number of V-cycles is desired.

4 Refinement by Krylov acceleration

A possible way to accelerate a nonlinear method is with a Krylov acceleration scheme introduced by

Oosterlee and Washio [11]. If we write our nonlinear system of equations as

F (u) = Nu− f = 0 (26)

(where we have dropped the superscript h as we are referring to the fine grid only) then given a current

approximation to the solution uC resulting from the most recent multigrid step and l stored intermediate

(or past) solutions u1, .., ul (obviously if only k previous multigrid cycles have been performed where k < l

then we will have only k intermediate solutions) we wish to find a more optimal solution in the space

uC + span[u1 − uC , u2 − uC , ..., ul − uC ]. (27)
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In order to do this we make a linear approximation of the nonlinear operator F around uC on the space

uC + span[u1 − uC , u2 − uC , ..., ul − uC ]:

F (uC +
l∑

j=1

θj(uj − uC)) ≈ F (uC) +
l∑

j=1

θj

(
∂F

∂u

)

uC

(uj − uC)

≈ F (uC) +
l−1∑

j=0

θj(F (uj)− F (uC)).

(28)

We then define a new solution

uA = uC +
l∑

j=1

θj(uj − uC) (29)

where the parameters θ1, .., θl are chosen so as to minimize

‖F (uC) +
l∑

j=1

θj(F (uj)− F (uC))‖2. (30)

If we denote F (uC) by X,
∑l

j=1 θj(F (uj)− F (uC)) by Y and F (uj)− F (uC) by Zj . Minimizing (30) is

equivalent to minimizing

Φ = (X + Y, X + Y ) = (X, X) + 2(X, Y ) + (Y, Y ) (31)

where

(X,Y ) = θ1(X, Z1) + .... + θl(X, Zl) (32)

and

(Y, Y ) =
l∑

j=1

θj

[
l∑

i=1

θi(Zj , Zi)

]
. (33)

∂Φ
∂θi

= 2(X,Zi) + 2
l∑

j=1

θj(Zi, Zj). (34)

Setting ∂Φ
∂θi

= 0 for all i we get an l × l linear system

Aθ = σ (35)

to solve in order to find the optimal values for θ1, .., θl , where

aij = (Zi, Zj) = (F (ui)− F (uC), F (uj)− F (uC)) = (F (ui), F (uj))− (F (uC), F (ui))

−(F (uC), F (ui))− (F (uC), F (uC)) (36)

and

σi = −(X, Zi) = −(F (uC), F (ui)− F (uC)) = (F (uC), F (uC))− (F (uC), F (ui)). (37)

Since we are using a linear approximation of our nonlinear operator we have to take into account the

fact that in some cases this approximation may not be reasonable (i.e. accurate), and that as the number

of intermediate solutions used increases the accuracy of the approximation may decrease. In order to

protect against this the following selection and restart criteria are proposed as in [11].

Selection Criteria. The following 2 criteria are used to decide whether uA is a suitable solution (if

not uC is chosen):
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(1) ‖F (uA)‖2 < γA min(‖F (uC)‖2, ‖F (u1)‖2, ...., ‖F (ul)‖2)

(2) ε‖uA − uC‖2 < min(‖uA − u1‖2, ...., ‖uA − ul‖2)
or ‖F (uA)‖2 < δ min(‖F (uC)‖2, ‖F (u1)‖2, ...., ‖F (ul)‖2),

where γA is chosen to be 2, ε to be 0.1 and δ to be 0.9. Condition 1 says that the residual norm of the

new solution should not be considerably larger than that of the intermediate solutions and condition 2

states that uA should not be too close to any of the intermediate solutions unless a significant reduction

of the residual norm occurs.

Restart Criteria. The acceleration process is restarted (i.e all stored solutions dropped) if either of

the following criteria are found in two consecutive iterations:

(1) ‖F (uA)‖2 ≥ γB min(‖F (uC)‖2, ‖F (u1)‖2, ...., ‖F (ul)‖2)

(2) ε‖uA − uC‖2 ≥ min(‖uA − u1‖2, ...., ‖uA − ul‖2)
and ‖F (uA)‖2 ≥ δ min(‖F (uC)‖2, ‖F (u1)‖2, ...., ‖F (ul)‖2).

These conditions are just the opposite of the selection conditions. γB is taken as 2 (note γA and γB can

take different values but γB must always be greater than 1).

The extra costs associated with Krylov acceleration of a multigrid step are the evaluation of several

residuals and inner products, the cost of which is approximately 100N and the direct solution of a small

linear system, the cost of which is negligible, thus the overall cost of a Krylov accelerated nonlinear

multigrid step is still O(N). For the case where ν1 = ν2 = 5 (as used in the experiments in the next

section) Krylov acceleration adds approximately 10% to the total cost.

5 Numerical results

In our first experiment we compare the performance of our multigrid method when S1 is used as a

smoother with the performance when S2 is used as smoother. Experiments are carried out on a gray-

scale image with 256× 256 pixels and range [0, 255] to which gaussian white noise with SNR≈ 5 (SNR=
∑

Ω(ui,j − ū)2/(
∑

Ω(nij)2) where ū is the mean of of u) is added. The original and noisy images are

shown below. In this experiment we take Ωh to be the unit square. We take values of 30 and 0.01 for
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Figure 1: Original (left) and noisy (right) images
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αh and βh. We take ν1 = ν2 = 10 in our multigrid method, as this appears to be optimal. The coarsest

grid used is the 8× 8 grid, which means we have 6 grid levels in total. The multigrid method is run with

both smoothers until the relative residual has been reduced by a factor of 10−4. The parameters maxit

and tol in S1 are taken as 2 and 10−6 respectively. In S2 we perform 3 steps of Gauss-Seidel on the

linear system i.e we take it to be 3. The table below shows the performance of the method for the two

smoothers:

Smoother Number of multigrid steps required for convergence CPU time (s)
S1 9 8982
S2 6 221

As we can see the multigrid method with S2 converges in three less steps than with S1 and is around 40

times faster to run. The processed image from S2 is displayed in Figure 2.

50 100 150 200 250

50

100

150

200

250

Figure 2: Image recovered using nonlinear multigrid with S2 smoother

In our second experiment we compare the performance of our nonlinear multigrid method (NMG) with

that of the primal-dual Newton Method (P-D) [3] for various sizes of image. We apply both methods

to various sizes of the image shown in Figure 1 (the right plot with noise). As before we have SNR≈ 5.

We take values of 30 and .01 for the parameters αh and βh in all experiments. The nonlinear multigrid

method is run with S2 as smoother with 3 inner steps of Gauss-Seidel, 10 pre-correction and 10 post-

correction smoothing steps are used and a coarsest grid 8 × 8. We also run the nonlinear multigrid

method with the Krylov acceleration, in this case ν1 = ν2 = 5 for the multigrid steps as this appears to

be optimal, the number of intermediate solutions stored is 5. The inner linear steps in the primal-dual

method are done using preconditioned conjugate gradient with incomplete Cholesky preconditioner, on

step k the stopping criteria for these inner steps is a relative decrease of the linear residual by a factor of

min(0.1, 0.9‖rk−1‖2/‖rk−2‖2) where r is the nonlinear residual, as specified in [3]. The initial guess for

all methods is the noisy image z and the stopping criteria for all methods is a decrease in the relative

residual by a factor of 10−4.

All the results for comparison can be found in Table 1. We see that both the multigrid method on

its own and the Krylov accelerated method take less cpu time to run than the Primal-Dual method, also

this difference is larger as a percentage, as the size of the image increases. In the case of the 1024× 1024

image the Krylov accelerated multigrid method is almost twice as fast as the primal dual method. We

remark that the optimal choice for the P-D method suggested in [3] is not strictly a Newton method, as

the Newton step is not accurately done; however if a normal (or high) accuracy (say with tolerance 10−4)
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Table 1: Comparison of the proposed NMG and Krylov NMG with the P-D method
size P-D NLMG(10/10) KNLMG(5/5)

steps cpu time (s) flops steps cpu time (s) flops steps cpu time (s) flops
256 12 235 7.5e(8) 6 221 9.5e(8) 8 148 7.0e(8)
512 14 1158 3.5e(9) 6 891 3.8e(9) 8 610 2.8(9)
1024 14 4947 1.5(10) 5 3029 1.3(10) 8 2507 1.1(10)

is used, then the P-D is not as competitive.

The convergence history of the three methods for the 256×256 case is shown in figure 3. The relative

residual versus number of iterations is shown on a log scale. We see that the nonlinear multigrid method

shows fastest convergence on the first step and then slows, when Krylov acceleration is used this slowing

down of the convergence seems to be less dramatic. The convergence of the primal-dual method on the

other hand accelerates as the number of steps increases (note that the cost of a step in the primal dual

method is variable).

Figure 3: A comparison of the new Nonlinear Multigrid and its Krylov accelerated variant with the
Primal Dual method.

0 2 4 6 8 10 12
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

number of steps

re
la

tiv
e 

re
si

du
al

PD         
NLMG(10/10)
KNLMG(5/5) 

Next we test our method on 2 more realistic images, the lenna image with SNR≈ 3 and the satellite

image with SNR ≈ 4. We then test the method on images with large amounts of noise, we use the triangle

image with SNR≈ 0.8 and the satellite image with SNR≈ 1. All images are 256 × 256 in size and have

range [0, 255]. βh is taken as 0.01 in all cases, αh is taken as 75 for the triangle, 30 for lenna and for the

satellite with SNR 4 and 50 for the satellite with SNR 1. As before the initial guess is the noisy image

and the stopping criteria is a decrease in the relative residual by a factor of 10−4. The results are given

below.

Image P-D NLMG(10/10) KNLMG(5/5)
steps cpu time (s) steps cpu time (s) steps cpu time (s)

Lenna (SNR 3) 14 288 8 288 11 209
Satellite(SNR 4) 13 263 8 304 11 205
Satellite(SNR 1) 15 361 13 497 19 349

Triangle(SNR 0.8) 13 331 9 329 13 245

Finally we comment on the performance of our multigrid method with respect to the parameter βh

(comments relate to experiments run using the 256×256 triangle image with SNR 5 and αh fixed at 30) .
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Figure 4: The original and true images (left: satellite as in [10] and right: Lenna as widely used).
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Figure 5: Noisy Satellite (SNR=4) and recovered image
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Figure 6: Noisy Lenna (SNR=3) and recovered image
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Figure 7: Noisy Triangle (SNR=0.8) and recovered image
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Figure 8: Noisy Satellite (SNR=1) and recovered image
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The larger the value of βh, the better our multigrid method performs. For βh = 10−3 we found that both

the multigrid method and the Krylov accelerated multigrid method took roughly twice as long to run as

when βh was taken as 10−2 and in the case of the multigrid method on its own we had to increase the

number of pre and post correction steps to achieve convergence. For values of βh ≤ 10−4 the multigrid

method requires further acceleration.

6 Conclusions

The standard nonlinear multigrid method does not work using the commonly-used pointwise Gauss-Seidel-

Newton smoothers. Provided β is not too small, the nonlinear multigrid method with our recommended

smoothers (especially S2) is competitive with the primal-dual method for a range of different images and

noise levels and may offer a particular advantage for processing very larger images. The use of a Krylov

acceleration procedure makes our nonlinear multigrid method faster in all our experiments. Further work

is needed on our multigrid method if small values of β are desired. In addition, other ideas such as

algebraic multigrids and multigrids based on optimisation may also be considered.
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