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Abstract

Modelling the interaction of an acoustic field in a fluid and an elastic structure submerged in the
fluid leads to a system of complex linear equations with a complicated sparsity structure and, for
higher wavenumbers and adequate modelling, the systems are very large. Direct methods are not
practical. Preconditioned iterative methods, which are suitable for single operator equations, are not
immediately applicable to the coupled case. This paper proposes a block diagonal preconditioner of
the sparse approximate inverse (SPAI) type that can accelerate the convergence of a Krylov iterative
solver for the coupled system. Moreover, the proposed preconditioner can properly and implicitly
scale the coupled matrix. Some numerical results are presented to demonstrate the effectiveness of
the new method.
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1 INTRODUCTION

This work is concerned with the solution of the linear systems of equations arising from modelling the
interaction of an acoustic field in a fluid medium (such as the sea) with an elastic structure (such as a
submarine or other vessel). Refer to [1, 17, 12].

The acoustic field is governed by the small amplitude linear wave equation which is reduced to a
Helmholtz equation when considered as single frequency harmonic waves [5]. The Helmholtz equation
in the exterior of an elastic structure is formulated in equivalent integral equation form over the surface
of the structure to avoid the problem of the infinite fluid domain. This has the added advantage that
the acoustic problem is reduced from a three-dimensional problem to a two-dimensional one while the
Sommerfeld boundary condition at infinity is satisfied exactly, as is well known. The integral equation
is then reduced to discrete form using the boundary element method (BEM). The displacement of an
elastic structure under the influence of the applied and acoustic field is modelled by a linear elasticity
equation which is in turn solved using the finite element method (FEM). These models are coupled by
insisting that the fluid particle velocity normal to the surface is continuous [1].

As far as fast solution is concerned, some special cases of simpler geometries have been considered
before. In the case of axisymmetric structures, further dimensional reduction can be done and leads to
relatively smaller linear systems [1]. In particular, the Schur complements idea has been tried (i.e. either
the structural equation or the surface Helmholtz equation is eliminated first). However, for the fully
three-dimensional case, the coupled system is too large to use any direct solution methods, especially for
medium and large wavenumbers. Iterative methods with standard preconditioners converge too slowly, or
without suitable preconditioning not at all (see our experiments later). One way to make use of existing
methods is to scale the coupled system first using diagonal matrices before considering preconditioning,
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achieving some success [2]. Here continuing the work of [2], we take a different approach that implements
scaling implicitly.

We propose to use a block diagonal preconditioner of the SPAI type to accelerate the convergence of
the Krylov iterative solution methods, mainly the generalized minimal residual method (GMRES [14, 6])
and the conjugate gradients squared method (CGS [16, 6, 15]).

It should be remarked that, although our particular coupling problem arising from structural acoustics
is somewhat typical of a larger class of coupling interaction problems, there exist many other related but
different models and methods in this general field; refer to [7, 9, 13, 18].

2 'THE MODEL PROBLEM AND SOLUTION METHODS

We first briefly describe the models used for modelling our fluid and structure interaction problem in three
dimensions. It consists of a vibrating elastic structure and an acoustic field exterior to this structure.
Refer to [1, 17].

The behaviour of the elastic structure under the influence of the applied and acoustic fields is modelled
by linear elasticity. Using a finite element method, either through discretizing the structural differential
equation from beam theory or by energy conservation of the structure body, a structural equation can
be written. As in [1] we take the latter approach to derive a linear system, which is of the form

(K —w’M)g = £, 1)

where K is the stiffness matrix, M the mass matrix, ¢ the displacement, and f = ik + fj’ the total load

due to the applied forces (f*) and the fluid pressure (f¢). Here w is the time harmonic frequency for the
kinetic energy of the structure and the stiffness matrix contains a large Lame constant .

In our discretization scheme, we approximate the structure surface using piecewise quadratic surfaces
defined over triangular elements. Further, prism-shaped finite elements are formed by projection from
these surfaces to the centre of the structure and we define piecewise quadratic interpolation functions on
the triangular faces and piecewise linear functions on the rectangular faces to approximate q. Overall,
the matrices in (1) are real, symmetric, and sparse. B

For the corresponding acoustic field, the use of single frequency harmonic waves of the form ®(p,t) =
#(p)e~ ™, where ®(p,t) is the excess pressure at the point p at time ¢, reduces the linear wave equation
(governing ®) to a Helmholtz equation [5, 1]

V24(p) + k*¢(p) = 0, 2)

where k = w/c is the acoustic wave number, ¢ being the wave speed. To ensure that all waves are outgoing
at infinity, we use the Sommerfeld radiation condition (r = |p — ¢| with p,q € R?)

lim r {62—@ - ik¢(r)} =0.

T—0Q

Formulating the Helmholtz equation in equivalent boundary integral equation form over the surface of

the structure gives
0G(p,q) 9¢(q) _1
[{#0 %22 — 6,020 L as, = Lot

where G (p, q) = % is the free-space Green’s function for the Helmholtz equation. To avoid problems

of non-existence and non-uniqueness of the solutions of the integral equation at the natural frequencies
of the structure, we use the Burton and Miller formulation,

(—%I+Mk+a/\/'k)¢= [£k+a<%I+MZ>] %, 3)

where £} and My, are the single and double layer Helmholtz potential operators, ./\/lkT and N}, are their
normal derivatives, and a is a coupling parameter whose imaginary part must be nonzero. The above
integral equation is discretized using the boundary element (BE) method. We use the collocation method,



with triangular elements for the surface of the structure and piecewise constant interpolation functions
for the solution, which discretizes (3) as a linear system of the form

RQ = lwaQ -G (4)

where p is the fluid density, ¢ is the pressure, v the velocity, and ¢ the incident wave pressure. The
matrices in this system are dense and complex (non-Hermitian).

For the coupled system, we require that the fluid particle velocity be continuous at the surface of the
structure to couple the BE and FE systems. The load due to the fluid pressure, f, can be written in
terms of the pressure potential ¢ as B

f?=-L¢ with f®=f—fF

where L is a matrix derived from the basis functions used in the BE and FE analyses. Also, the velocity,
v, can be written in terms of the displacement, g, as

v =—iwl'y,

where L' is a matrix derived from the basis functions used in the FE analysis. Then the coupled problem
is to solve, simultaneously, the equations

{ (K —w*M)q = f* - L¢. (5)

This gives the partitioned system for ¢ and ¢
R —w?pBL' ¢ —c

L K-wM

B
[~
ol

which will be written as the generic equation
Az =b. (6)
A typical matrix of this system has the pattern of nonzeros as in Fig.1. Diagrammatically, the block

0

501
BE block - 100 1
R NN e + Coupling
36 x 36 = | strip
Complex, dense 200} —w?pBL
e 36 x 444
250113 Complex,
ool sparse
Coupling strip — asol \} + FE block
L o K —w?’M
444 x 36 O - 444 x 444
Real, sparse s Tmeal Real, sparse,
0 5‘0 160 1‘50 2[;0 ZéO 360 35‘0 400 450 Symmetric

nz = 39788

Figure 1: Pattern of the coupled matrix A



structure of the matrix is

BE BEC
Boundary element block Coupling strip
(small, dense (fairly full,
complex) complex) )
FEC FE )
Coupling strip Finite element block
(sparse, real) (sparse, real,
i symmetric) ]

In this study, we use two iterative methods — GMRES and CGS. For convenience, we describe the
methods in the following algorithms (with GMRES(m) denoting the restarted GMRES, see [14]) for
solving (6) via APy = b, x = Py with matrix P to be specified later.

Algorithm 1 (CGS iterative solver with right preconditioning)

1. Set the initial guess, yo, and the maximum number of iterations, MAXIT

2. Compute the initial residual r9 = b — APyy and set pg = ug = ro

3. for j =0,1,... MAXIT unless ||r;||/||ro|]| < TOL

4. pj = Ppj, oj=(rj,r0)/(Apj,T0), ¢; =u; —a;Ap; and s;=u;+gq;

5. Yi+1 =y +asj, s;=Psj, rjz1=r; —ojls;

6 Bi = (rjw1,70)/(rjsmo), Wiy =7jyr + Bigs,  Pita = wjpr + Bi(g; + Bips)
7. end

8. Accept the solution x = Py.

Algorithm 2 (GMRES iterative solver with right preconditioning)

1. Set the initial guess yo, the restart value m, and the mazimum number of iterations MAXIT
2. Compute 1o = b — APyq, B = ||rol|2, and v1 =1/

3. fork=1,..., MAXIT unless exit from the loops (global)

4. forj=1,....,m (outer loop)

5. Compute v; = Pv; and w = Av;

6. fori=1,...,j (inner loop)

7. hz’,j = (w,vi) = ’UJH’U,'

8. w=w - hi,jvi

9. end i (inner loop)

10. Compute hjy1,; = ||w||2, vit1 = w/hjt1,; and define Vi, = [v1,...,0n], Hy = {h,-,j}E;éTnH
11. end j (outer loop) o
12. Solve Yy, = argmin,||Ber — Hpyll2. Compute ym = yo + VinYym, = Pym andr =b — Az

13. Accept the solution z and exit if B/||roll2 < TOL with 8 = ||r|2

14. Set vy =r/8 and yo = Ym.

15. end k (global).

There is no convergence of either method for our coupled system without any preconditioning (i.e. setting
P = I). This may be because the eigenvalues of matrix A are too spread out. Ideally, the eigenvalues
should be clustered, say at 1, and there should be few near zero. Preconditioning can achieve this.

We first consider the simplest preconditioners. These are the inverses of sparse approximations to
A, such as the matrix with just the diagonal entries, or block diagonal entries, of A, or incomplete
factorizations of A. It turns out that these do improve the convergence of iterative solvers but they
are not robust. For example, a simple diagonal preconditioner produces slow convergence for GMRES
(instead of no convergence) but not CGS. Scaling of the matrix on the right by a diagonal matrix

I 0
[ 0 D, ] ’
where I is the identity matrix of the size of the BE part R and D, is a diagonal matrix of the size
of the FE part, with diagonal entries 107! to equalize the maximum size of the entries in both parts,
also produces slow convergence of GMRES (as observed in [2]) but not CGS. The table below shows
the number of iterations required for GMRES(00) to converge to a tolerance of 10~5 using the diagonal

inverse matrix alone (diag), and the scaling matrix alone (scale). Clearly both ideas are useful but we
shall explore further improvements.



Size Method GMRES Size Method GMRES Size Method GMRES
480 scale 51 702 scale 87 2754 scale 170
diag 42 diag 79 diag 94

3 SPARSE APPROXIMATE INVERSES AND a priori PATTERNS

The performance of iterative solvers can be greatly improved using more sophisticated preconditioners,
including ones involving approximations to the inverse of A itself. We are using such preconditioners,
generated by an algorithm called SPAT (SParse Approximate Inverse). A major advantage of this method,
particularly for this problem, is that it is easily parallelizable.

The method can be used to generate a left or a right preconditioner; consider the case of a right
preconditioner. The method determines how good an approximation P is to A~! by minimizing the
Frobenius norm

|AP — I||. (®)

From the definition of the Frobenius norm, this minimization problem separates into n independent least
squares problems

min || Amy, — eg]|2, k=1,2,...,n,

mp

where my, and ey, are the kth columns of P and I respectively. For sparse A (as in this case) and P these
problems are small and quick to solve.

Hence the method is implemented column-by-column (or row-by-row for a left preconditioner) and so
is easy to parallelize. Run sequentially, the method is not competitive with other methods for speed but
it can be when run in parallel. Separation of the columns/rows also means that effort can be concentrated
on the difficult ones, which may be a particular advantage for this problem. We can adopt the well-known
implementation of an adaptive approach as in [10]. In this method we start with a simple pattern for P
(usually diagonal) and add a few entries at a time (usually 5), chosen by a minimization procedure for
the error involved in adding the entries to the column, until an error tolerance or a maximum number of
nonzeros in the column has been reached. The choice of entry positions can be restricted, for example to
those of A. Tt is important that the total number of nonzeros per column is kept fairly small; just one full
column defeats the object since more work is involved in this case than in a direct method of solution.

Alternatively, if we can find a good sparsity structure for the approximate inverse beforehand, this
can be used as an a priori pattern, with the method being used to solve the least squares problem for all
the corresponding entries in a column at once. This avoids the adaptive procedure and so can be much
faster, but it is important that the a priori pattern is sufficiently sparse. This is an inherent problem
since the true inverse is almost certain to be full. See Refs. [11, 3, 4]. To choose a good a priori pattern,
we need to know which of the entries in the true inverse of A are the most important. We can use the
theory of the relationship between the pattern of A, denoted by S(A), and the pattern of its inverse,
denoted by S(A™1). From the characteristic polynomial of A, we have

aol + oA+ anA? + a3 A + -+ + @, A" = 0,
where the o’s are the coefficients in the polynomial. Multiplying by A~! and rearranging, we have
A = —(ar T+ oA+ azA? + s A + -+ 0, A" ) /ag.
Hence the pattern of A~1 is contained in the pattern U?;Ol S(A%), or
SATH CS(T+A4)" )

so we can use S((I + A)™) for small m as an approximate pattern for A=!, and hence as an a priori
pattern. Provided that A has a full diagonal, we can thus use A4, A2, A3 etc as a priori patterns.

Unless the matrix is very sparse, it is clearly necessary to remove some of the entries from the matrix
before using it or its powers as a priori patterns, in order to avoid the pattern being too dense. It is
obviously essential for full matrices. This can be done using various methods, including a simple dropping
strategy based on a threshold using the mean of the entries, either globally or per column. This process
is called sparsification. In our case, this will be done for both the BE (complex) and FE (real) parts.
The outline of the a priori SPAI method for a generic n x n matrix A is as follows.



Algorithm 3 (The a priori SPAI algorithm)

for k=1,...,n (loop through the cols of A)

Determine the indices of nonzero entries in the k" column of the pattern matriz to form the vector J
Determine the unique indices of the monzero entries of the J cols of A to form the vector T

Form the reduced matrix A = A(Z,J) and the reduced identity vector é = ey ()

Solve for the k" column, My, of the reduced approzimate inverse matriz, M, from

Grds o o~

min || Arivy, — éx/|
mp

6. Set the appropriate entries of the k" column of M to 1y,
7. end

4 A NEW BLOCK DIAGONAL PRECONDITIONER

Rather than using SPAI on the whole matrix, we propose to take advantage of the block structure of
the matrix and apply the a priori SPAI method for each of the two diagonal blocks. Thus we obtain an
approximate block diagonal inverse preconditioner. The overall block diagonal preconditioner takes the
following form

BEINV
SPAI approximate 0
| A | inverse for BE block
P= [ P, ] = FEINV ©)
0 SPAT approximate
inverse for FE block

from solving (see (7))
rr113in||BEP1 —Illr and nlljin”FEPZ —I||p.
1 2

Here the a priori patterns for P, P, are based on the patterns of the original blocks, with sparsification
using a dropping strategy based on the global mean of the absolute values of the entries.

For cases where the (full) BE part is small compared to the (sparse) FE part, we can afford to fill
this completely to produce a very accurate inverse, while still keeping the overall number of nonzeros in
P small. However, it is more efficient with SPAI to use sparsification to reduce the number of nonzeros,
when both blocks of A are relatively large.

Now we remark on the implicit scaling done by our preconditioner P. Clearly from (7) and above,
FE P, = (K — w?M)P, ~ I. Suppose / is an ideal scaling constant and (K — w?M) = (K — w?M)/{ is
a better scaled matrix in relation to BE in (7). If we try to construct an SPAI block preconditioner for
the scaled matrix, we will get

(K — 2Py = (K — W)= Py = (K — sz)%PQ ~ 1.

(S

Therefore, we see that P» = P,/{ assuming that we use the same a priori pattern and hence constants
in FE will not affect the quality of SPAI. The main point here is that £ needs not to be known at all.
That is, preconditioner P implements an implicit scaling for A.

The resulting preconditioner is as effective as those using the a priori method for the whole matrix,
but the new method is considerably faster and there are less nonzeros in the preconditioner. There is
obvious scope for parallelization of the SPAI for the BE and FE parts for high resolution simulations.

5 NUMERICAL RESULTS

We have carried out extensive tests for the block diagonal SPAI method with sparse vector storage
throughout [8]. The method has also enabled us to test larger systems than was previously possible, by
virtue of the reduced memory requirements of the new method and better efficiency.

The numerical experiments are conducted for a steel concentric sphere, with inner radius 0.75 m
and outer radius 1 m, in water. Only the outer spherical surface vibrates and interacts with the water



medium. The physical parameters for all the cases were as follows:

Young’s modulus = 209 x 10 Nm™2,
Poisson’s ratio = 0.3,

Density of steel = 7800 Kgm ™,
Density of water = 1000 Kgm ™2,
Speed of sound in water = 1500 ms—!.
Frequency tested w = 1500 rad/sec (wave number k = 1).

The tolerance for all the iterative methods was 10~° for all cases and GMRES was restarted as shown.
The matrices were not scaled.
The headings for the columns in the tables have the following meanings:

CASE

The size of the matrix, n, together with the sizes of the BE, npg, and FE, nrg, blocks

FR BE and FR FE

The numbers by which the means of the absolute values of the nonzero entries of the BE and FE
blocks respectively were multiplied to give the threshold value above which positions were retained
for the a priori pattern.

NNZBE/COL and NNZFE/COL

The average number of nonzeros per column in the a priori patterns, and hence in the BE and FE
approximate inverses, for the BE and FE blocks, respectively.

BE TIME and FE TIME

The total times taken for the generation of the approximate inverses for the BE and FE blocks
respectively. In some cases, times for the previous method involving assembly of the coupled
matrix before SPAT are shown in brackets for comparison.

CGS ITS and CGS TIME

The number of iterations for CGS to converge to the required tolerance, and the total time taken.

GM(m) ITS and GM(m) TIME

Total number of inner iterations required for GMRES(m), where m is the restart value, to converge
to the required tolerance, and the total time taken. The time taken includes the time for the total
number of inner iterations within which convergence occurred so that, for example, if GMRES(50)
converged in a total of 55 = 1 x 50 + 5 inner iterations, the iterations stop after the fifth inner
iteration in the second outer iteration.

Table I: Test cases and results from the new block SPAT preconditioner

CASE FR FR NNZ NNZ BE FE CGS CGS  GM(50) GM(50)
n BE FE BE/ FE/ TIME TIME ITS TIME ITS TIME
(nBE,nFE) COL COL
480 0 0 36 68 0075 (.06) 839 (8.07) 9 031 11 04
(36, 444) 0.1 01 34 56 0.07 (.05) 5.91 (5.69) 12 0.39 16 0.54
702 0 0 36 78 0.074 26.52 14 0.92 17 1.18
(36, 666) 0.1 01 34 64 0.067 18.16 23 1.42 26 1.69
1884 0 0 144 69  11.05(9.82) 46.56 (52) 16 248 18 2.94
2 01 9 54 0.18 29.66 25 3.43 30 4.54
2754 0 0 144 80 10.91 143.58 23 6.76 25 7.92
(144, 2610) 0.1 0.1 82 67 4.53 101.9 30 8.17 35 10.13
2 01 9 67 0.18 101.12 33 8.89 36 10.83
7500 0 0 576 69 2591 (2318) 271 (442) 32 32.45 35 37.87
(576, 6924) 0.1 0.1 179 48 340 (315) 146 (271) 43 37 54 51.04
2 0.1 17 48 7.36 145 50 40.51 55 49.84

Tables I and II clearly demonstrate that the new preconditioner is quite effective for the CGS and
GMRES(m) method. There is a fine balance between thresholds and convergence. Without further fine



Table II: Larger test cases and results from the new block SPAI preconditioner

CASE FR FR NNZ NNZ BE FE CGS CGS GM GM
n BE FE BE/ FE/ TIME TIME ITS TIME (100) (100)
(nBp,nrE) COL COL ITS TIME
10962 0 0 576 80 2400 781 32 50.85 38 64.64
(576,10386) 0.1 0.1 179 63 341 524 57 80 59 91.96
. 05 .. 35 .. 193 65 83 67 97.4
2 01 17 63 7.55 524 >5000 60 90.89
29964 0 0 2304 69 1.5e6 2376 66 1039 71 1059
(2304, 27660) 0.1 0.1 393 45 45234 1393 >1000 135 1761
. 1 . 20 44262 550 >1000 210 2657
2 . 9 44377 275 >1000 333 4202

tuning, we would suggest the value of 0.1 for both “FR BE” and “FR FE”. Not surprisingly, CGS is
less robust than GMRES. As mentioned, these experiments were conducted in Fortran on a Sun Blade
100 sparc-workstation. For Table II, direct solvers cannot be set up and attempted because of memory
limitation.

Finally, we make a comparison with other related methods. Table III shows some results for simple
diagonal preconditioners and ILU (incomplete LU decomposition) preconditioners using the pattern of
the original matrix with comparable number of nonzeros. In Table III, these results were obtained using
Matlab 5 using the full pattern of the coupled matrix (i.e. “FR BE”, “FR FE” = 0 in Table I) as the a
priori pattern are shown for comparison. Here GMRES(00) with no restart is used.

Table III: Comparison results with other methods.
CASE METHOD GMRES GMRES CGS CGS METHOD

ITS FLOPS ITS FLOPS FLOPS

480 SPAI 11 1.44e7 8 1.34e7  1.1e9
ILU 27 3.22e7 16 2.66e7  8.1e6
DIAG 42 4.0e7 DNC

702 SPAI 17 3.6e7 13 3.38e7  3.48e9
ILU 45 8.9e7 36 9.33e7  1.55e7
DIAG 79 1.38e8 DNC

1884 SPAI 18 1.3e8 15 1.4e8 6.72e9
ILU 47 3.67e8 33 3.63e8  1.08e8
DIAG 73 4.5e8 DNC

2754 SPAI 25 2.67e8 22 2.87e8  1.87el0
ILU 55 5.95e8 28 4.1e8 1.4e8
DIAG 94 8.6e8 DNC

7500 SPAI 35 2.2e9 31 2.6e9 3.23ell
ILU 108 8.49e9 63 7.16e9  5.21e9
DIAG 154 9.2e9 >2000

Note: No convergence (denoted by DNC) is also observed for cases without any preconditioning.

The comparison results show that the use of simple diagonal and ILU preconditioners can enable
GMRES to converge and CGS to converge sometimes. However, the performance is generally not as
good as our suggested SPATI and the ILU method does not have the advantage of being easily parallelized.
Thus, although ILU appears to be doing well in preconditioner set up from the last column of Table III,
use of parallel methods will reduce that for SPAI dramatically.

APPENDIX — AN ALL-REAL BLOCK DIAGONAL SPAI ALGORITHM

In our BE-FE formulation (7), there exist a mixture of real (FE) and complex (BE) matrices. However,
if so desired, we can write an algorithm by splitting the complex parts of the system into their separate
real and imaginary parts and equating the real and imaginary parts on both sides to give a new and
all-real system, as follows.



Denote the original system as

M w

Splitting the complex blocks into their real and imaginary parts, the system can be written as

[R1+iR2 L1+'iL2:||:¢1+i¢2:|:|:C1+iC2:| (11)
C F q +igo ! '
Expanding this system, we have two equations
(R1 +iR2)(¢1 +id2) + (L1 + iL2)(q1 + ig2) = 1 + icy (12)
C(¢1 +ida) + Flqr +ig2) = f (13)
and, multiplying out,
Ri¢y +iRa¢1 +iR1¢2 — Rapo + Liqr + iLaqr +iL1q2 — L2ga = ¢1 +ica
Cé1+iC¢2 + Fq1 +iFg2 = f.
Equating the real and imaginary parts on both sides, we get four equations
Rigr — Ropo + Liqs — Lagz = ¢4 (14)
Rap1 + Rapa + Log1 + L1g2 = ¢2 (15)
Copr+Fq=f (16)
C¢2 + Fqgs =0, (17)
and these can be written as the new system
Ry —Ry |L; —Ls ¢1 C1
Ry R, Lo I, ¢2 _ C2
cC 0 [F 0 o | |7 (18)
0 C 0 F a2 0

If the original BE and FE blocks are of size ngg X npg and ngpg X ngg, respectively, the sizes of the
blocks in this new system are

ZnBE X 2nBE 2nBE X 2nFE

(19)

2’I’LFE X 2’I’LBE anE X anE

The structure of the matrix of this system gives new possibilities for the block diagonal SPAT method
and for sparsification, in all-real arithmetic.

6 CONCLUSIONS

The coupled system from using boundary and finite element methods to model the dynamic fluid-structure
interaction problem cannot be solved by iterative methods without preconditioning and suitable scaling.
In this paper we have proposed a block diagonal preconditioner of the approximate inverse type and
demonstrated that the method enables CGS and GMRES to converge quickly. The method is also
compared favourably with the ILU preconditioner. Further work involving high order boundary elements
and parallel computing is under way.
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