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Abstract

Digital inpainting is a fundamental problem in image processing and many variational models for

this technique have appeared recently in the literature. Among them are the very successfully

Total Variation (TV) model [1] designed for local inpainting and its improved version for large

scale inpainting: the Curvature-Driven Diffusion (CDD) model [2]. For the above two models,

their associated Euler Lagrange equation is a highly non linear partial differential equation. For

the TV model there exists a relatively fast and easy to implement fixed point method, so adapting

the multigrid method of [3] to here is immediate. For the CDD model however, so far only the

well known but usually very slow explicit time marching method has been reported and we explain

why the implementation of a fixed point method for the CDD model is not straight forward.

Consequently the multigrid method as in [3] will not work here. This fact represents a strong

limitation to the range of applications of this model since usually fast solutions are expected. In

this paper, we introduce a modification designed to enable a fixed point method to work and to

preserve the features of the original CDD model. As a result, a fast and efficient multigrid method

is developed for the modified model. Numerical experiments are presented to show the very good

performance of the fast algorithm.

AMS subject class: 68U10, 65F10, 65K10.

Keywords: Image inpainting, variational models, regularization, multilevel methods.
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1 Introduction

Image inpainting has been defined as the process of reconstituting the missing or damaged

portions of an image, in order to make it more legible and to restore its unity. The aim of

inpainting is then to modify an image in a way that is non-detectable for an observer who

does not know the original image [4].

There are a variety of reasons why images can have damaged parts, for instance because

of some physical degradation like aging, weather or intentional scratching. Not only that,

we also would like to recover parts of objects of an image occluded by other objects or

to reconstruct parts that have been missing due to digital communication processes. We

can imagine a number of applications of this technique: among the most known are the

restoration of old pictures with scratches or missing patches [4], text removal, digital zooming

and superresolution [1], error concealment [5], disocclusion in computer vision, X-Ray CT

artifacts reduction [6], and the long list continues. Inpainting techniques deal with these

kinds of problems trying to reconstruct in the best possible way the missing or damaged

parts of the image from the available information.

The mathematical interest on this field became increasingly active by the end of the last

decade with the very first works on image interpolation of Mumford, Nitzberg and Shiota [7],

Masnou and Morel [8] and Caselles, Morel and Sbert [9]. However it was the pioneering work

of Bertalmio et al [4] who proposed an algorithm to imitate the work of inpainting artists who

manually restore old damaged pictures which mainly motivated all the subsequent research

in this field [1]. This algorithm cleverly transports a smoothness image measure (namely the

Laplacian of the image) along the level lines (contours of the same image intensity) directed

into the inpainting domain; in their paper, they also showed that some intermediate steps

of anisotropic diffusion are necessary to avoid blurring of edges. This algorithm was created

mostly intuitively but later on turned out to be closely related to the Navier-Stokes equation,

as showed by Bertozzi et al, see [10]. Since then, many other authors have proposed different

models for digital inpainting.

Chan and Shen [1] introduced the Total Variation (TV) model for local inpainting based

on the celebrated total variation based image denoising model of Rudin, Osher and Fatemi

[11]. Later on the same authors modified this model to improve its performance for large

scale inpainting, and created the so-called Curvature-Driven Diffusion (CDD) model [2].

Furthermore they, together with Kang, introduced a higher order variational model [12]

based on the Euler’s elastica which connects the level lines by using Euler elastica curves

[13] instead of using straight lines as the TV model does. Unfortunately for the latter two
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models there appear to exist no fast methods to find the numerical solution. The aim of this

paper is to develop a fast multigrid algorithm for the CDD model.

A related inpainting model was proposed by Esedoglu and Shen [14] and is based on the

very successfully Mumford-Shah image segmentation model. This model is also good for

local inpainting but shares the same problem of the TV model that it cannot reconnect far

apart separated parts of broken objects. To fix this problem, the same authors [14] proposed

the Mumford-Shah-Euler inpainting model which in the same fashion of the Euler’s elastica

model uses the information encoded in the curvature to reconnect smoothly the level lines.

More recently, in a separate idea, Bertozzi, Esedoglu and Gillete [15] proposed a model to

inpaint binary images based on the Cahn-Hilliard equation and Grossauer and Scherzer [16]

proposed a model based on the complex Ginzburg-Landau equation. It remains to develop

a fast multigrid method for this model.

Each one of the above models has its own particular features which may not suit all

applications. However as rightly remarked in [17] one of the most interesting open problems

in digital inpainting (whatever the model) is the fast and efficient digital realization. The

new multigrid method for the CDD model is our first step in developing fast algorithms for

this technique.

The rest of this paper is organized as follows. Section 2 introduces the image inpainting

problem and 2 variational models, followed by the review of a commonly-used numerical

method in Section 3. Section 4 describes first the modified CDD model and then the frame-

work of a nonlinear multigrid method with emphasis on the local smoother. A local Fourier

analysis is shown to give an indication of the effectiveness of the smoother. Finally Section

5 presents some testing results illustrating the effectiveness of the modified model and the

associated multigrid method.

2 Problem Formulation and Variational Models

Given an image z = z(x, y) defined on a domain Ω ∈ <2 and one subset D ⊂ Ω where

the pixel values of z are missing or damaged due to some reason as illustrated in Figure

1. The typical inpainting problem is to try to reconstruct the values of z in D from the

available information on Ω\D which may contain noise. The subset D which is known as

the inpainting domain may have complicated topology and be not necessarily connected.
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Fig. 1: Illustration of a typical inpainting problem.

2.1 The Total Variation Model

In this section we review very briefly the TV model [1]. This model was constructed based

on three principles that according to [1] a good inpainting model must satisfy. They are:

Locality meaning that to carry out the inpainting process only the information surrounding

the inpainting domain must be used. Restoration of narrow edges meaning that the model

must be able to reconstruct the missing parts of the edges which give the most visually

information in an image. And finally due to images usually have some amount of noise

included, the model must be Robust to noise meaning that it must get rid of that noise (up

to some reasonable level) and restore the missing part.

Based on the image denoising model of Rudin, Osher and Fatemi [11] and assuming that

u = u(x, y) and n = n(x, y) are the true image and the unknown additive Gaussian noise

respectively and they satisfy z = u + n on Ω\D. The TV inpainting model is as follows

min
u

∫

Ω

|∇u| dxdy +
λ

2

∫

Ω\D
(u− z)2 dxdy. (1)

Even thought direct minimization ideas from [18] could be applied, so far the above

minimization is numerically solved by means of its associated Euler-Lagrange equation given

by

∇ ·
( ∇u

|∇u|
)

+ λE(z − u) = 0 with
∂u

∂~n
= 0 in ∂Ω, (2)

where ~n is the unit outward normal on the boundary ∂Ω and λE

λE =

{
λ > 0 u ∈ Ω\D
0 u ∈ D .

(3)

In D, where λE = 0, equation (2) reduces to an ill-conditioned boundary value problem

with non unique solution as it was shown in [9].
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To illustrate the virtues and limitations of the TV model we shall present two inpainting

examples. In Figure 2, the inpainting domain D represented by the horizontal noisy bars has

relatively small size compared with the characteristic feature of the image, therefore the TV

model performs very well and carry out a good inpainting. In Figure 3 however, D which

is represented by the noisy triangle is relatively large and therefore the TV model gives an

unpleasant result.
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Fig. 2: Example of a good TV inpainting.
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Fig. 3: Example of one of the limitations of the TV model.
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2.2 The Curvature-Driven Diffusion Model

The CDD model which we review in this section was designed to correct the failure of the TV

model (due to its locality feature) to reconnect far apart separated parts of broken objects.

Looking for a solution to this problem, Chan and Shen [2] realized that in the TV model

the diffusion coefficient given by D̂ = 1
|∇u| only depends on the contrast or strength of the

level lines and it does not depend on the geometric information of the level lines themselves.

They found that the curvature κ = κ(x, y) defined as κ = O · ∇u
|∇u| could be used to modify the

diffusion coefficient D̂ by introducing a function g = g(κ) within it. This way the geometric

information encoded in κ is used to get the diffusion coefficient stronger where it is necessary.

The new D̂ is then given by

D̂ =
g(|κ|)
|∇u| , with g(s) =





0 s = 0
∞ s = ∞
> 0, 0 < s < ∞.

(4)

On one hand, the choice of g(∞) = ∞ was selected to take advantage of those points

with very high or infinity curvature and use them to encourage reconnection increasing D̂

as much as possible.

On the other hand, the choice of g(0) = 0 is to avoid the CDD model degenerating to

the TV model. According to Chan and Shen the choice of g(0) = a 6= 0 could endanger the

connectivity principle, see [2]. We will discuss more on this subject later on. They suggested

[2] the use of

g(s) = sp, with s > 0, p ≥ 1. (5)

To get rid of possible noise present on the initial image which could be propagated at

the interior of the inpainting domain, a fidelity term is used as in the TV model. Thus, by

defining G = G[(x, y), |κ|] as

G =

{
1 (x, y) ∈ Ω\D
g(s) (x, y) ∈ D,

(6)

the CDD scheme is to solve the following third order nonlinear equation:

∇ · V + λE(z − u) = 0 with
∂u

∂~n
= 0 in ∂Ω, (7)

where ~n and λE are defined as before, and the vector field V = 〈V 1, V 2〉 defined as V = G ∇u
|∇u| .

Since V contains the term |∇u|−1, to avoid the singularity at flat regions |∇u|β
def
=

√
|∇u|+ β

is used instead of |∇u|, where β is a small parameter. We denote the left hand side of (7)

as a function g(u) so the equation will become g(u) = 0, and denote by

α =

{
1
λ

in Ω\D
1 in D

and χ =

{
1 in Ω\D
0 in D

(8)
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so that (7) will be the same as α∇ · V + χ(z − u) = 0.

3 Review of Numerical Methods

In this section, we intend to review the state-of-the-art methods for numerically solving the

CDD model. Surprisingly the list is very short and it only has been solved using an explicit

time marching scheme.

3.1 Discretization

We start by discretizing (7) as follows

V 1
i+ 1

2
,j
− V 1

i− 1
2
,j

h
+

V 2
i,j+ 1

2

− V 2
i,j− 1

2

h
+ λE(zi,j − ui,j) = 0. (9)

The scheme is illustrated in Figure 4. Now we have to approximate V 1 and V 2 at the half-

points, for instance at (i+ 1
2
, j), ux is approximated by central differences (ux)i+ 1

2
,j = (ui+1,j−

ui,j)/h, uy by average approximation (uy)i+ 1
2
,j = (ui+1,j+1−ui+1,j−1 +ui,j+1−ui,j−1)/4h and

|∇u|β in the natural way :

1

h

√
(ui+1,j − ui,j)

2 +

(
1

4
(ui+1,j+1 − ui+1,j−1 + ui,j+1 − ui,j−1)

)2

+ h2β (10)

Fig. 4: On the left side an x -half-point and on the right side a y-half-point.

Hence we have

−Gi+ 1
2
,j

(
α(ux)

i+1
2 ,j

h|∇u|
i+1

2 ,j

)
+ Gi− 1

2
,j

(
α(ux)

i− 1
2 ,j

h|∇u|
i− 1

2 ,j

)
−Gi,j+ 1

2

(
α(uy)

i,j+1
2

h|∇u|
i,j+1

2

)

+Gi,j− 1
2

(
α(uy)

i,j− 1
2

h|∇u|
i,j− 1

2

)
+ χui,j = χzi,j.

(11)

To approximate the curvature term κ in G and in (4), we use the same idea of the ghost

half points to approximate the divergence operator

κ = ∇ · ∇u

|∇u| =
∂

∂x

[
ux

|∇u|
]

+
∂

∂y

[
uy

|∇u|
]

. (12)
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By using again central differences and averages we have for example at (i + 1
2
, j) that

h · ∂

∂x

[
ux

|∇u|
]

i+ 1
2
,j

=

[
ux

|∇u|
]

i+1,j

+

[
ux

|∇u|
]

i,j

. (13)

4h · ∂

∂y

[
uy

|∇u|
]

i+ 1
2
,j

=

[
ux

|∇u|
]

i+1,j+1

−
[

ux

|∇u|
]

i+1,j−1

+

[
ux

|∇u|
]

i,j+1

−
[

ux

|∇u|
]

i,j−1

. (14)

Finally (7) becomes a system of nonlinear algebraic equation denoted by g(ui,j) = 0 or

ui,jSi,j − ui+1,j

(
Ci+ 1

2
,j

)
− ui−1,j

(
Ci− 1

2
,j

)
− ui,j+1

(
Ci,j+ 1

2

)

−ui,j−1

(
Ci,j− 1

2

)
− χzi,j = 0

(15)

where the new C notation represents the nonlinear terms, for instance,

C(i+ 1
2
,j) =

α G(i+ 1
2
,j)

h|∇u|(i+ 1
2
,j)

(16)

and similarly we can construct C for the other three half-points and Si,j is defined as

Si,j = Ci+ 1
2
,j + Ci− 1

2
,j + Ci,j+ 1

2
+ Ci,j− 1

2
+ χ. (17)

3.2 Explicit Time Marching Method

By using this method one assumes that the solution is expected to be the steady-state

solution of a parabolic equation of the form:

∂u

∂t
= ∇ · V + λE(z − u), (18)

or, ∂u
∂t

= α∇ · V + χ(z − u), with the initial condition u(x, y, 0) = z(x, y) and appropriate

boundary conditions. and using an explicit Euler method for the left hand side, we get

uk+1
i,j = uk

i,j − τg(uk
i,j), k = 0, 1, . . . (19)

Here a size restriction on the time step τ = ∆t has to be imposed to guarantee the stability

of the numerical solution. This is the main drawback of the time marching method, the

problem being that due to its high nonlinearity, τ must be chosen very small which implies

a large number of iterations to reach a meaningful solution. One option is to accelerate this

method using the ideas developed in [19]. However, even in that case the cpu-time consumed

by the resulting algorithm is still not appropriate for large images.
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3.3 A possible fixed point method

For numerically solving the nonlinear algebraic equation (11) at each (i, j) point we fix the

nonlinear terms G and |∇u| at some k -step and solve for the k+1 step as in [20, 21] for other

problems. We have from (15) that

uk+1
i,j Si,j − uk+1

i+1,j

(
Ck

i+ 1
2
,j

)
− uk+1

i−1,j

(
Ck

i− 1
2
,j

)
− uk+1

i,j+1

(
Ck

i,j+ 1
2

)

−uk+1
i,j−1

(
Ck

i,j− 1
2

)
= χzi,j

(20)

where similar to before

Ck
(i+ 1

2
,j)

=
α Gk

(i+ 1
2
,j)

h|∇u|k
(i+ 1

2
,j)

(21)

and so on, and

Si,j = Ck
i+ 1

2
,j

+ Ck
i− 1

2
,j

+ Ck
i,j+ 1

2
+ Ck

i,j− 1
2

+ χ. (22)

Then such a fixed point method amounts to solving the linear system of (20)

A(uk)uk+1 = z, (23)

where uk and z vectors are defined as uk = [uk
1,1, u

k
2,1 . . . , uk

n,1, uk
1,2, . . . , u

k
n,m] and z =

[χz1,1, χz2,1 . . . , χzn,1, χz1,2, . . . , χzn,m].

The selection of G on D plays a crucial role on the feasibility of the implementation of

the numerical scheme. According to Chan and Shen [2], on the inpainting domain, G must

obey equations (5) and (6). Therefore it must be

G =





0 κ = 0
∞ κ = ∞
|κ|p, with p ≥ 1 0 < κ < ∞

. (24)

However if we allow G to be equal to zero when κ = 0, matrix A(uk) is singular i.e.

every time κ = 0 at one (i, j) pixel of the image then A(uk) losses one degree of its rank.

Therefore the fixed point (FP) method (32) does not work for the CDD model with (24).

4 Nonlinear Multigrid

Multigrid methods (MG) have proved to be very useful when solving many linear (and some

nonlinear) partial differential equations (PDEs) such as those arising from image restoration

problems and others, see [3, 22, 23, 24, 25, 26] for successful examples. Usually for a multigrid

method to converge, finding a suitable smoother is the key and the task is nontrivial for a

nonlinear problem.



, 10

We now proceed to develop a multigrid algorithm for the CDD formulation (7):

∇ ·
(

Gi,j
(∇u)i,j

|∇u|i,j

)
+ λE(zi,j − ui,j) = 0. (25)

First of all, we start by introducing new notation and rewriting the equation for the

purpose of making it more tractable for computing implementation. To present a nonlinear

multigrid method, write (25) as

(Nu)i,j = −α∇ ·
(

Gi,j
(∇u)i,j

|∇u|i,j

)
+ χui,j = χzi,j. (26)

where we have denoted by Nu = χz the main nonlinear operator equation, always keeping

in mind the action of the indictor function χ. Since we have to approximate this equation

on grids of different sizes we will denote by Nhuh = χzh the discrete approximation on the

finest grid Ωh of size h and denote by N2hu2h = χz2h the same on Ω2h which is obtained by

standard coarsening i.e the nonlinear operator N2h which results from discretizing equation

(26) using a cell-centered grid Ω2h with grid spacing 2h. The same way we can generate a

sequence of L coarse levels 4h, 8h, . . . , L.

Next we briefly mention the standard intergrid transfer operators. Denote by R2h
h (re-

striction) and Ih
2h (interpolation) respectively two transfer operators between Ωh and Ω2h

which on cell-centered grids are defined by the following equations.

The Restriction operator is defined by R2h
h vh = v2h where

(v2h)i,j = 1
4
[(vh)2i−1,2j−1 + (vh)2i−1,2j + (vh)2i,2j−1 + (vh)2i,2j]

1 ≤ i ≤ n/2, 1 ≤ j ≤ m/2.
(27)

The Interpolation operator is defined by Ih
2hv2h = vh where

(vh)2i,2j =





1
16

[9(v2h)i,j + 3[(v2h)i+1,j + (v2h)i,j+1] + (v2h)i+1,j+1]
1
16

[9(v2h)i,j + 3[(v2h)i−1,j + (v2h)i,j+1] + (v2h)i−1,j+1]
1
16

[9(v2h)i,j + 3[(v2h)i+1,j + (v2h)i,j−1] + (v2h)i+1,j−1]
1
16

[9(v2h)i,j + 3[(v2h)i−1,j + (v2h)i,j−1] + (v2h)i−1,j−1]
1 ≤ i ≤ n/2, 1 ≤ j ≤ m/2.

(28)

Finally we discuss how to treat the two operators across the interface of the inpainting

domain D.

(*) ADD details.............

For the smoother which in a general way we denote by FPGS we shall give its specific

definition later on. Now we proceed to state our nonlinear MG which was selected to be a
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V-cycle method meaning that just one recursive call to the algorithm is made on each level

to approximately solve the coarse grid problem.

Algorithm (Nonlinear Multigrid Method)

Select an initial guess vh

set k=0

While ‖vk+1
h − vk

h‖2 < tol

vk+1
h ← FAS(vk

h, N
k
h , zh,Mh, v0, v1, v2, gsiter)

k=k+1

end

The algorithm FAS [26] is defined recursively as follows:

vh ← FAS(vh, Nh, zh,Mh, v0, v1, v2, gsiter)

Algorithm (FAS)

1. If Ωh = coarsest grid, solve Nhvh = zh accurately (i.e. ν0 iterations) and return

Else

2. Pre-smoothing: For l = 1 to ν1, vh ← FPGS(vh, zh, gsiter,Mh).

3. Restrict to the coarse grid, M2h ← R2h
h Mh and v2h ← R2h

h vh.

4. Set the initial solution for the next level, v̄2h ← v2h.

5. Compute z2h ← R2h
h (zh −Nhvh) + N2hv2h.

6. Implement v2h ← FAS2h(v2h, N2h, z2h,M2h, v0, v1, v2, gsiter).

7. Add the residual correction, vh ← vh + Ih
2h(v2h − v̄2h).

8. Post-smoothing: For l = 1 to ν2, vh ← FPGS(vh, zh, gsiter,Mh).

Here Mh is the mask for the inpainting domain and M2h is the mask for the coarser grid

which results from applying the restriction operator I2h
h to Mh. Since Mh is composed only

by zeros representing the pixels in Ω\D and ones representing the pixels in D, the mask on

the next coarse level M2h = I2h
h Mh will have some non zero neither one entries due to the

action of the operator I2h
h on Mh, so we have to reset those entries to zero.
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The number of pre and post-correction smoothing steps is given by ν1 and ν2 respectively,

and ν0 represents the number of iterations carried out at the coarsest grid which in our

experiments is always 2 × 2. On the other hand, gsiter represents the number of Gauss-

Seidel iterations at each pre or post-smoothing step.

4.1 The modified CDD and the FP smoother

Due to the problem described above in §3.3, we decide to introduce two positive parameters

a and b in the function g emulating the Euler’s Elastica model [12]. Then our proposal for

G is

G =





a κ = 0
∞ κ = ∞
a + b|κ|p, with p ≥ 1 and 0 < κ < ∞.

(29)

For a general p, our modified CDD takes the form

∇ · (a + bκp)
∇u

|∇u| + λE(z − u) = 0. (30)

Now we can similarly consider a fixed point method for numerically solving the discretized

equation of (30) at each (i, j) point we fix the nonlinear terms G and |∇u| at the current

k -step and solve for the new k+1 step. Thus we again obtain that

uk+1
i,j Si,j − uk+1

i+1,j

(
Ck

i+ 1
2
,j

)
− uk+1

i−1,j

(
Ck

i− 1
2
,j

)
− uk+1

i,j+1

(
Ck

i,j+ 1
2

)

−uk+1
i,j−1

(
Ck

i,j− 1
2

)
= χzi,j

(31)

where

Ck
(i+ 1

2
,j)

=
α Gk

(i+ 1
2
,j)

h|∇u|k
(i+ 1

2
,j)

, Si,j = Ck
i+ 1

2
,j

+ Ck
i− 1

2
,j

+ Ck
i,j+ 1

2
+ Ck

i,j− 1
2

+ χ, (32)

whose corresponding linear system A(uk)uk+1 = z is now never singular and hence solvable.

Note that, setting b = 1 and 0 < a < 1 reduces the modified model to the original CDD

model [2]. On the other hand, setting a = 1 and b = 0 transforms the modified CDD to the

TV model [1].

In order not to violate the connectivity principle [1] we must select a < b. However if

we select a too small compared with b we introduce instability to the linear system (15).

Experimentally we found that 5 < b
a

< 50 works well.

With this new proposal for G, the main virtue of the CDD model of reconstructing large

scale missing parts is kept with the additional advantage that now we can implement a fast

and efficient numerical method.
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(*) What about rows for D part. DD is Not true, only weakly DD. We can

check that in this case A(uk) is a symmetric and sparse block-tridiagonal matrix with the

important feature that it is strictly diagonally dominant. To show this, we can choose

and arbitrary row of it and see that all the ai,j with i 6= j entries but at most four are

equal to zero. The nonzero entries in this row are given by Ck
i+ 1

2
,j
, Ck

i− 1
2
,j
, Ck

i,j+ 1
2

and Ck
i,j− 1

2

respectively and all are positive. The diagonal entry ai,i on the other hand is computed using

(32). Thus, we have that ai,i >
∑n

i6=j |ai,j| in Ω and therefore A(uk) is strictly diagonally

dominant. Furthermore, because G ≡ 1 in Ω\D and G = a + b|κ|p with p ≥ 1 in D we can

deduce by using the Gerschgorin theorem that A(uk) is Positive Definite.

Therefore, the FPGS smoother is simply to apply some Gauss-Seidel relaxation steps to

the linear system (15). The FPGS algorithm is defined as vh ← FPGS(vh, zh, gsiter,Mh)

as follows :

Algorithm (FPGS Smoother)

Choose initial guess vh.

For k = 1 to gsiter,

apply Gauss Seidel iterations to the linear system

Ah(u
k
h)u

k+1
h = zh

end

(*) Need to add LFA results to show why 10-50 iterations are needed. We

observed that by solving as accurately as possible each fixed point iteration the multigrid

algorithm converges faster. However could be unnecessary and a waste of time to do that.

Experimentally we found that between 10 and 50 Gauss Seidel iterations (depending on

the size of the inpainting domain) give a good convergence rate with reasonable cpu-time

consuming.

Remark 1: We also considered another two local smoother’s. (*) Not clear here! Need

to give details of formulation. A local Newton-Gauss-Seidel algorithm, as shown in

[22] and [23] which is known to converge only with heavy under-relaxation and with very

bad smoothing capabilities. Also we constructed a fixed-point smoother similar to the one

developed in [22] and [23] and later on used successfully in [21]. The later was tested in our

MG algorithm resulting in very slow convergence and sometimes without reaching the desired

quality of reconstruction.
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5 Numerical results

In this section, we shall give results of three different inpainting problems designed to test the

performance of the multigrid algorithm, as illustrated in Figures 6, 7 and 8. We also include

the problem of Figure 5 to show the performance of the algorithm on a real old photograph.

Actually, this experiment is also showed in the original paper of the CDD model [2] where

only a reduced size (due to slow convergence of the numerical method) is tested.

We choose several resolutions of the three new problems and display the results in Table

1. To measure the restoration quality, we found it useful to use the Peak-Signal-To-Noise-

Ratio (PSNR) to check how similar two images u and u0 of size m× n are each other. The

PSNR is defined as

PSNR = 20 log10

(
255

RMSE(u, u0)

)
, RMSE(u, u0) =

√∑
i,j(ui,j − u0

i,j)
2

mn
. (33)

In real life situation, such a measure is no possible because u0 is not known. (*) Can we

show some PSNR/RMSE values for the original image and the newly restored

image?

Comparison. Even for small images like those of size 128 × 128 the time marching

scheme takes thousands of iterations to reach a meaningful result not say convergence and

because of this its outcome can take hours or days for larger images to be available. Therefore,

practically there is no point of comparison with the multigrid algorithm being the last many

times faster. (*) Need to give some cpu timings even in text, if not in Table 1.

Full Multigrid. We observed that for very large scale inpainting domains as those of

the ring problem illustrated in Figure 7, our MG algorithm is slightly dependent on the

initial guess. Even though our MG always converge no matter the initial guess, its rate of

convergence was found to be dependent on the initial guess in the cases described above.

In order to reduce this dependence and to improve even more the speed of convergence

we constructed a Full Multigrid method (FMG) as described in [26] obtaining even better

results, see Table 1.

6 Conclusions

In this paper we developed a fast and efficient nonlinear MG algorithm for solving the CDD

model.



, 15

MG FMG
Problem Image Size MG cycles CPU MG cycles CPU
Lena 128×128 2 8 1 9

256×256 3 43 1 24
512×512 3 473 1 218

Bars 128×128 6 26 6 28
256×256 9 130 9 140
512×512 8 657 8 689

Ring 128×128 4 33 2 25
256×256 4 134 2 85
512×512 3 496 1 217

Tab. 1: Overall results

(*) If Page 10 does not have more details specific to inpainting, and we don’t

add LFA, then it is hard to claim we ”developed” anything. So far only a very

slow time marching scheme had been reported and therefore the model only was able to

reconstruct very small-size images in an acceptable amount of time. Moreover, the nonilnear

MG does not work for the original CDD model of [1].

By finding out why a fixed-point method is not feasible for the original CDD model

because the model degenerates when the curvature κ vanishes in flat regions of the image,

we then proposed a modified CDD model for which a fixed-point method is feasible. We

demonstrated that a nonlinear MG is applicable to the modified model. Numerical results

confirmed that the multigrid method with the fixed point type smoother is very fast and the

modified model retains the desirable property of the original model of reconnecting the level

lines across large distances.
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