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Abstract
The gradient descent approach is the most widely used method in variational modeling of

many image processing applications such as image restoration and segmentation. While a user is
likely to be content with results obtained after a few time steps, the gradient descent approach
can be quite slow in achieving convergence. Among fast iterative solvers, multilevel methods offer
the potential of optimal efficiency. This paper first reviews a class of efficient numerical methods
for the variational model and then presents our recent work on developing optimization multigrid
methods. Advantages of the proposed algorithms over previous results are presented.
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1 Introduction

The purpose of this paper is to address the fast solution of a variational model for image processing.
To concentrate on the main ideas we consider the standard total variation (TV) based variational
model which was proposed by Rudin-Osher-Fatemi (ROF) [55] and studied by various researchers
[1, 72, 73, 6, 14, 43]. Other problems are equally important [18, 16, 70, 71]. We remark that improved
models have recently been proposed; see [8, 13, 21, 22, 57] and references therein. Our discussion
should be applicable to these new models.

The ROF TV model [55] solves the following minimisation problem

min
u

∫

Ω

(
α|∇u|+ 1

2
(u− z)2

)
dxdy, (1)

where z = z(x, y) ∈ R2 is an observed image (in practice only a discrete matrix z of z(x, y) is given)
that requires restoration, u = u(x, y) will be the restored image, α > 0 is a regularization parameter
that is necessary for ensuring uniqueness of the inverse problem of image restoration, Ω may be taken
as the unit square and ∇u = (ux, uy) so |∇u| =

√
u2

x + u2
y. The Euler-Lagrange equation for (1) is

−α∇ ·
( ∇u

|∇u|
)

+ u− z = 0, (2)

which is a nonlinear partial differential equation (PDE), also known as a curvature equation [52, 77].
One can observe that the ‘equivalence’ assumes that |∇u| 6= 0 (which is not a reasonable assumption)
while problem (1) is well posed regardless |∇u| 6= 0 or not. To overcome this ‘minor’ problem, one
normally solves the following equation instead of (2)

−α∇ ·
( ∇u

|∇u|β

)
+ u− z = 0, (3)

where |∇u|β =
√
|∇u|2 + β for some small β > 0. This equation may be viewed as the Euler-Lagrange

equation for the modified problem of (1):

min
u

∫

Ω

(
α|∇u|β +

1
2
(u− z)2

)
dxdy. (4)

The gradient descent approach proposes to solve, instead of the elliptic PDE (3), the parabolic
PDE

ut = α∇ ·
( ∇u

|∇u|β

)
− (u− z), (5)

where u = u(x, y, t) will converge to the solution of (3) when t →∞, with u(x, y, 0) = z. The advan-
tage is that various explicit time-marching schemes may be used to solve (5) in a computationally
convenient way [55, 52, 48, 71, 47]. For example, the explicit Euler scheme proceeds as follows

uk+1 − uk

∆t
= −α∇ ·

( ∇uk

|∇uk|β

)
+ uk − z,

for k ≥ 0 and u0 = z. Note that if ∆t′ = α∆t can be large enough, at k = 0, the one-step scheme
mimics the nonlinear diffusion type models [53, 42]

u1 − u0

∆t′
= −∇ ·

( ∇u0

|∇u0|β

)
.
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As far as fast solvers are concerned, on a single level, the most robust method that we have tested
for (3) is the Chan-Golub-Mulet (CGM) algorithm [25, 23] in the primal-dual pair (u,w)

{ −α∇ · w + u− z = 0,
w|∇u|β −∇u = 0, ‖w‖∞ ≤ 1

(6)

by introducing the new variable w = ∇u/|∇u|β in a mixed formulation as in a mixed finite element
method. However we shall be mainly concerned with multilevel methods in this paper for efficiently
solving (1). Some numerical comparisons to this CGM algorithm are shown later on. One interesting
observation of (6) is the following. Clearly eliminating w reduces it to the original PDE (3). However,
if we try to eliminate u in the second equation by using u = z + α∇w from the first equation, we
obtain (noting ∇ · w = div w)

−∇ (αdiv w + z) + |∇ (αdiv w + z) |βw = 0

which reduces to the same dual formulation [13] for β = 0. Therefore, if letting λ = α, the two
formulations reproduce each other via their dual variables: w = −p. (Refer to §2 below.)

2 Review of unilevel methods for solving the TV formulation

There is a rather rich literature of related work towards efficient solution of the denoising model (1).
Here we give a brief review before we turn to multilevel methods in the next section. Each method
attempts to address the non-smoothness and nonlinearity in (1) in a different way.

2.1 The dual formulation

The primal formulation (1) may be indirectly solved via a dual formulation [13, 34]. Define the dual
variable p = (p1, p2) s.t. u = z − λdiv p. Then the dual formulation takes the form

min
p∈Y

‖z − λdiv p‖, |pi,j |2 ≤ 1,∀ i, j = 1, . . . , n (7)

where Y is the Euclidean space as specified in [13]. The above problem may be equivalently solved
[13] from

−[∇(λdiv p− z)
]
i,j

+
∣∣[∇(λdiv p− z)]i,j

∣∣pi,j = 0,

in which one can observe that the nonlinearity is now present in the ‘source’ term.
The dual formulation for a related problem to (1)

min
u

∫

Ω

(
α|∇u|+ 1

2
(Ku− z)2 +

β

2
|u|2

)
dxdy (8)

is studied in [35]. Such a formulation leads to a similar dual optimization problem to (7) except that
the new dual variable is bilaterally constrained.

2.2 The modified total variation method

If |∇u| 6= 0, model (1) is easy to solve. For the general case, one idea (quite different from (3)) is to
modify the TV-norm [14, 39, 54] to exclude all sets where |∇u| = 0. As compensation, regularization
over these sets is done with smooth norms such as with |∇u|2. More specifically in [14], the following
problem is considered:

min
u

∫

Ω

1
2
(u− z)2dxdy + α

(∫

|∇u|>δ
|∇u|dxdy +

1
δ

∫

|∇u|≤δ
|∇u|2dxdy

)
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for a given δ > 0. Although the modified problem is still non-smooth, it is formally differentiable.
Another idea of modifying the TV model is to solve the following minimization problems [5]

min
u

∫

Ω

(
1
2
(u− z)2 +

α

s
|∇u|s

)
dxdy

for 1 ≤ s ≤ 2 (see [22, 57] for other models of this type). Numerical solution methods for this model
are proposed in [39], where the model was found to give some optimal performance with s = 1.1 or
1.2. Incidentally the work of [17] on a different image problem recommends the choice of s = 1.3 in
similarly modifying the TV norm.

2.3 The active set method

This is a discrete approach [37, 12, 38] for solving the Euler-Lagrange equation of problem (8) which
is a related idea to the above modified method i.e. treat inactive sets |∇u| = 0 differently from
active sets |∇u| > 0. For pixels in the active sets, the problem is smooth while for others, a modified
smooth problem is solved by ignoring the TV term.

2.4 The tube method

The discrete solution of (1) can be shown (in one dimension) to lie in a tube, bounded by two known
linear splines [36]. As this solution can be interpreted as a taut string in the tube, the taut-string
algorithm from statistics can solve the TV model in two dimensions [36]:





Solve Φ from ∆Φ = z, Φ
n = 0

Define the vector quantity Fz = (F1, F2) = ∇Φ
Solve for two taut-string functions ω1, ω2 from

min
ωi

∫

Ω

√
1 + |∇ωi|2dxdy subject to the tube domain:

F1 − α ≤ ω1 ≤ F1 + α, F2 − α ≤ ω2 ≤ F2 + α.

Although it may appear that such a formulation is no easier than solving (1), the above method is
in fact more amenable to numerical implementation than (1) because the new problem is smooth.
Here ω = (ω1, ω2) acts like a dual variable but, different from [23], no β is required for (1). Moreover
a fixed-point algorithm (outer-loop) is suggested [36] to solve the main nonlinear optimization step.
See [58] for connections to bounded variation regularization.

2.5 The second-order cone programming method

To derive a general method for solving (1), we note that an alternative approach is to consider

min
u

∫

Ω
|∇u|dxdy, s.t. u + v = z,

∫

Ω
|v|2dxdy ≤ σ2,

where σ2 is a variance of the noise level in z. In particular, the main TV minimization is a non-smooth
problem whose discrete form may be denoted by minimizing

T (u1,1, u1,2, . . . , un,n) =
n∑

i,j=1

√
(ui,j − ui+1,j)2 + (ui,j − ui−1,j)2

subject to the usual adjustment near the image boundaries.
The key observation made in [33] on treating the non-smooth discrete TV-term is the following:

the inequality √
(ui,j − ui+1,j)2 + (ui,j − ui−1,j)2 ≤ ti,j
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defines a well-known second-order cone in optimization theory. The established interior point methods
may be used to solve problems with such cone constraints. Therefore the proposal is to replace the
minimization of T by minimizing the following equivalent merit function T̃

T̃ (t1,1, t1,2, . . . , tn,n) =
n∑

i,j=1

ti,j , s.t.
√

(ui,j − ui+1,j)2 + (ui,j − ui−1,j)2 ≤ ti,j ∀ (i, j).

Further the second-order cone programming (SOCP) method [33] is the following




min
t1,1,t1,2,...,tn,n

n∑

i,j=1

ti,j

s. t. ui,j + vi,j = zi,j , for i, j = 1, . . . , n
−Xi,j + (ui+1,j − ui,j) = 0, for i = 1, . . . , n− 1; j = 1, . . . , n
−Yi,j + (ui,j+1 − ui,j) = 0, for i = 1, . . . , n; j = 1, . . . , n− 1
Xn,k = Yk,n = 0, for k = 1, . . . , n√

X2
i,j + Y 2

i,j ≤ ti,j , for i, j = 1, . . . , n√
v2
1,1 + v2

1,2 + . . . + v2
n,n ≤ σ.

Here the extra variables Xi,j = (u
x)i,j and Yi,j = (u

y )i,j (and ui,j may be eliminated to leave 4n2

unknowns). See also [76]. To generate a sequence of interior points, an inner loop of iterations is
introduced after putting sparsity into consideration [33]. The overall complexity is O(N

√
N) with

N = n2 for an n× n image.

2.6 The additive operator splitting method

Although we have remarked that the time-marching method is widely used (but slow), improved
variants also exist. We wish to highlight the semi-implicit approach of an additive operator splitting
(AOS) method which is based on classical ideas of dimensional splitting and alternating directions.
The AOS method was originally proposed in [44, 45] for Navier-Stokes equations and it was redis-
covered independently later in [74] for nonlinear diffusion equations. Different properties of the AOS
methods have also been studied intensively recently in [30, 32, 31, 3].

Denote the discretized version of equation (5) from a semi-implicit time-marching scheme by (in
matrix vector form)

uk+1 − uk

∆t
=

2∑

`=1

A`(uk)uk+1 i.e. uk+1 =

(
I −∆t

2∑

`=1

A`(uk)

)−1

uk

where A` denotes the nonlinear coefficient matrix from discretization along the `-coordinate direction.
This is well-known. However the above inversion might not be a cheap operation if a direct (or even
an iterative) method is used.

The idea of [44, 45, 74] is to make an order O(∆t) perturbation so that the new scheme

uk+1 =
1
2

2∑

`=1

(
I − 2∆tA`(uk)

)−1
uk

is still a semi-implicit method with no essential loss of accuracy but is much easier to solve. The
inversion of

(
I − 2∆tA`(uk)

)−1 reduces to the solving of some three diagonal matrices over the lines
parallel to the `-coordinate direction, see [44, 45]. More importantly the modified scheme creates a
discrete scale-space, see [74].
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It should be remarked that there exist other anisotropic diffusion type models [42, 53] that are
differential equations based (i.e. not minimisation based) and higher order models [46] for the same
image restoration problem.

Although all above ideas might be generalized to a multilevel setting, such generalization work
remains to be done. In the remainder of the paper, we shall focus on multilevel methods.

3 Review of a class of multigrid methods

As we know, multigrid methods build on two well-known (i.e. old) mathematical ideas: residual
(defect) correction and coarse grid approximation. The modern multigrid methods were proposed in
the 1970s [27, 66]. The method was casted into a unified framework of multilevel and multidomain
subspace correction in the late 1980s (see [75, 65, 61] and the references therein). See [15, 68, 51] for
some recent work and refer to [27] for implementation details.

3.1 Linear multigrid approaches

One of the earliest attempts to solve (3) can be seen in [15, 68, 69, 70, 26, 41, 2, 59] where a linear
multigrid method is used in conjunction with a linearized PDE. Essentially at the current iteration
with ū (starting initially from ū = z with the Neumann’s boundary condition), multigrid methods
are used as an inner (fast) linear solver for

−α∇ ·
( ∇u

|∇ū|β

)
+ u− z = 0,

but the outer solver of repeating fixed point iterations may not converge very fast. There are also
some other approaches using different linearization methods and solve the linearized problem by a
multigrid technique.

3.2 The FAS nonlinear multigrid method

One of the well known multigrid method for nonlinear problem is the FAS (Full Approximation
Storage) algorithm of Brandt [9, p.346]. The original FAS algorithm for a nonlinear equation

N(u) = f (9)

needs to use a sequence of nested refined meshes T h
1 , T h

2 , · · · , T h
L . Assume that T h

1 is the finest mesh
and T h

L is the coarsest mesh. For the FAS algorithm, the nonlinear equation (9) also needs to be
approximated on the different meshes. Assume that equation (9) is approximated on T h

k by

Nk(u) = fk. (10)

Thus, the real problem we need to solve is (10) for k = 1.
Consider two successive meshes on levels k, k + 1 – a fine and a coarse level. We use Rk+1

k to
denote the standard restriction operator between T h

k and T h
k+1. Let the current approximation on

level k be uk after some smoothing steps. The task is to find a correction quantity ek+1 so that
uk+1 = Rk+1

k uk + ek+1 will be the new and improved approximation on the coarser mesh on level
k + 1. The FAS algorithm of [9, p.346] needs to solve the following equation on level k + 1:

Nk+1(uk+1) = f̄k+1, (11)

where f̄k+1 is computed recursively through

f̄k+1 = Nk+1(Rk+1
k uk) + Rk+1

k (f̄k −Nk(uk)).
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One just needs to use a linearized smoother for equation (11) to get uk+1 and the correction value
in fact is

ek+1 = ūk+1 −Rk+1
k uk.

For our nonlinear problem (1), the solution u and the data term z are non-smooth and have
discontinuities. The coarse mesh problems (10) could not approximate the problem on the finest
level. Thus it may not be appropriate to use them to find the correction values over the coarser
meshes unless β is sufficiently big [29, 56, 7].

3.3 Nonlinear subspace correction (NSSC) methods

For linear elliptic problems, it is known that the traditional multigrid methods is the same as the
subspace correction methods [75]. The subspace correction idea has been extended to nonlinear
convex minimization problems in [65]. For constrained convex minimization problems, algorithms
and convergence analysis are also available in [61, 63]. The essential ideas used for the nonlinear
subspace correction (NSSC) methods in [65, 61, 63] can be traced back to [62, 64]; see also [24]. In
the following, we shall outline the NSSC methods of [65, 61, 63] and show its differences from the
FAS algorithm [9].

If we apply the NSSC of [65, 61, 63] to linear elliptic problems, it reduces to the standard multigrid
method. For nonlinear problems, the essential idea of NSSC can be classified as in the following:

• The NSSC only uses the equation (10) on the finest mesh. It does not need to use the equation
(10) over the coarser meshes.

• The NSSC method was formulated for finite element approximations. The functions over
the coarser meshes are always regarded as a function defined on the finest mesh using the
standard interpolation concept. For convex minimization problems, the corrections values need
to minimize the cost functional over the finest mesh. Thus we do not need to construct cost
functional over the coarser meshes.

• Nonlinear minimization problems with respect to a scalar which is the nodal value for the coarse
mesh nodes need to be solved over all the coarse mesh nodes. We do not need to solve these
scalar nonlinear minimization problems exactly, c.f. [62]. If proper linearization methods are
used for these scalar minimization problems, the cost for NSSC per iteration can be O(N) where
N is the degree of freedom over the finest mesh. Otherwise, the cost is normally O(N log N)
for the NSSC as all the subproblems need to be transformed to a problem over the finest mesh.

The NSSC in [65, 61, 63] was formulated for convex minimization problems. The algorithms can
be extended to general nonlinear problems (1), but the convergence analysis may not be extended
to (1) under general conditions. For a given reflexive Banach space V , a convex subset K ⊂ V and
a smooth convex functional J : V → R, consider

min
v∈K

J(v), K ⊂ V, (12)

In case K = V , then (12) is equivalent to (9) with N(u) = ∂J(u). Here ∂J is the Gauteaux
differential of J . Note that N = ∂J is a nonlinear mapping which maps V to its dual space V ∗.
Assume now that we have generated a sequence of nested meshes T h

k . Let Vh be the finite element
approximation space we shall use for (12) over the finest mesh. Then the discretized solution for (12)
is the minimizer of

min
v∈Vh

J(v). (13)
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Let Vk be the finite element spaces over the meshes T h
k . Generally, the spaces Vk are spanned by

some basis functions, i.e.

Vk = span
({φk

i }nk
i=1

)
=

nk∑

i=1

V k
i ,

where
V k

i = span(φk
i ).

One essential idea of the NSSC is to regard Vh (Vh = V1) as a decomposition as in the following:

Vh =
L∑

k=1

nk∑

i=1

V k
i .

The NSSC is trying to use all the subspaces V k
i to find the correction values. Given a current

approximation u, the successive NSSC can be written as

• For k = 1, 2, · · ·L and then for i = 1, 2, · · ·nk:

Find c = argminsJ(u + sφk
i ), and update u as u := u + cφk

i . (14)

• End.

As N(u) = ∂J(u) is the Gateaux differential of a convex functional, the nonlinear scalar minimization
problem (14) is equivalent to finding c from

〈N(u + cφk
i ), φ

k
i 〉 = 0.

Here 〈·, ·〉 denote the duality pairing between V and V ∗ in the continuous setting and it is the L2

inner product for finite element functions in the discrete setting. Thus, the following algorithm can
be used for general nonlinear problems (9) and it is equivalent to the algorithm given in (14) if
N(u) = ∂J :

• For k = 1, 2, · · ·L and then for i = 1, 2, · · ·nk:

Solve c from 〈N(u + cφk
i ), φ

k
i 〉 = 0, and update u as u := u + cφk

i . (15)

• End.

Let g(s) = 〈N(u + sφk
i ), φ

k
i 〉, then (14) and (15) is to solve

g(c) = 0.

We normally do one step of gradient descent or Newton iteration. For differentiable J functionals,
it is easy to see that g′(s) = 〈∂2J(u + sφk

i ) · φk
i , φ

k
i 〉. For quasilinear problems, we can also use a

Picard iteration. The choice of the approximate solver for g(c) = 0 depends on the problem. For
some problems, it is possible to solve g(c) = 0 in a way which only has a cost of O(N) flops per
iteration. For (12), we shall give some details later about how to solve (14) and (15).

It is clear that the nonlinear function g depends on i and k. For general nonlinear problems, it
is very important that we do not solve (14) and (15) exactly, but replace g by some approximations
depending on the problem. A properly approximation for g and a proper implementation technique
can improve the numerical efficiency rather a lot. It should be observed that the functions u and φk

i

are regarded as functions defined on the finest mesh. The cost functional J(u+ sφk
i ) and N(u+ sφk

i )
shall be evaluated using the values of u + sφk

i over the finest mesh. The duality 〈N(u + sφk
i ), φ

k
i 〉 is

an integration involving N(u + sφk
i ) over the support set of φk

i .
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For clarity of presentation, we have chosen V k
i to be spanned by the basis functions φk

i . For some
(linear or nonlinear) problems, it might be necessary to choose the subspaces V k

i to be spanned by
a few related basis functions. We shall not go into much detail about this here.

For several reasons, it is preferable to avoid the use of the coarse mesh equations to get the
correction values. The first reason is differentiability. For some non-differentiable problems, the
coarse mesh problems may not approximate the fine mesh problem. The analysis of NSSC needs
differentiability of the cost functional, c.f. [65, 61, 63]. However, the algorithm given in (14) can
be used even for non-differentiable problems. There are also some other problems that the “simple”
coarse mesh equations fail to approximate the fine mesh equation. The well-known p-Laplace equation
and the equations for convection diffusion process with a non-dominating diffusion term belongs to
this class of problems.

3.4 FAS based multigrid methods for minimization

It is possible to use FAS algorithm for convex minimization problems as least when the minimization
functional is differentiable. Several related approaches, c.f. [4, 60, 10, 49], tried to design coarse
grid problems by using first order conditions (similar to using (2) to measure residuals). Specifically
consider a typical setting of 2 levels: a fine level k and a coarse level k + 1. The ‘closeness’ of the
current approximation uk on mesh T h

k to the true minimizer is measured by its first order condition
(i.e. via a discrete version of (2))

rk = ∂J(uk),

where we assume that J must be differentiable. Thus with such a residual information available, it
is proposed in [60, 49] to use the following coarse grid solver

min
uk+1

J(uk+1)− gT
k+1uk+1

where
gk+1 = ∂J(Rk+1

k uk)−Rk+1
k ∂J(uk)

represents the residual information projected onto the coarse grid as in a nonlinear multigrid method.
As we see, this is rather similar to the FAS algorithm.

3.5 NSSC method for (1)

In order to generalize the multilevel algorithm to optimisation, we have to discuss “local relaxation”
algorithms: what is a local relaxation and are local relaxations sufficient for solving (1) as a numerical
method? It turns out that a local relaxation for minimisation is simply a local minimisation and local
relaxations are not sufficient for solving (1) because only local non-stationary minimizers are found
i.e. local relaxations can get ‘stuck’ before reaching the global minimizer. For (1), Carter [11] appears
to be one of the earliest to observe such ‘stuck’ minimizers and hence would not recommend local
relaxations as a standalone method. This may be seen from Figure 1 where the observed image z is
denoted by ∗, the global minimizer (using α = 4) by © and the solution from local relaxation by 2;
clearly the local non-stationary minimizer 2 got stuck as noted by [11]. (Note: a local non-stationary
minimizer is not a local minimizer as the latter is also the global minimizer.) We remark that [11]
proposed hybrid relaxation methods using both the primal and dual formulations, and other ideas to
avoid using the primal relaxation alone. For general convex functions, the study of block relaxation
can be found in [67], where the problem of ‘stuck’ minimizers is also discussed. Other nonlinear
solvers for relaxation may be found in [39, 40, 50]; in particular, sophisticated optimization methods
are tested in [39].
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4 A piecewise constant NSSC algorithm for (1)

Instead of attempting other relaxation methods or formulations, a different idea was considered in
[19] where global minimization was achieved through utilizing multilevels. Some theoretical analysis
has also been given in [20]. In the following, we shall cast the standard approaches in [19, 20] as
NSSC algorithms for piecewise constant approximation and their suggested approaches as new NSSC
algorithms for (1).

Denote an observed image by z ∈ Rn×n and let n = 2L. The standard coarsening is used to define
L + 1 levels: k = 1(finest), 2, . . . , L, L + 1(coarsest). Take Ω = [0, 1]× [0, 1] as the coarsest mesh, we
divide each element of a coarse mesh element by connecting the four edge middle points to form four
equal rectangles over the fine mesh. The gives us a nested sequences of meshes with uniform mesh
sizes hk = 1/2k−1. The grid points for the finest mesh are xi = i/2L, yj = j/2L. Let nk = 2k−1 and
{τk

i,j}nk
i,j=1 be the rectangular finite elements for the mesh at level k. Then the functions φk

i,j given by

φk
i,j = 1 on τk

i,j else φk
i,j = 0, (16)

form a basis for the piecewise constant finite element space over the mesh of level k. On the finest
level, the discretized minimization we shall consider is:

min
u

Jh(u) (17)

where Jh(u) = α
∑nk−1

i,j=1

√
|D+

x ui,j |2 + |D+
y ui,j |2 + β + 1

2

∑n
i,j=1(ui,j − zi,j)2. Here u denotes a piece-

wise constant function defined on the finest level, ui,j is its value over an element τk
i,j(k = 1) and

D+
x , D+

y are the standard forward finite differences. This minimization problem is widely used for
image denoising which normally works on a fixed mesh. We remark that (1) has been discretized by
finite differences to give (17) so the function u may be constructed by any piecewise approximation
(not restricted to piecewise constants). This is also the reason that the approximated equations on
the coarser level are not appropriate to be used for the correction values.

We shall use the NSSC algorithm for solving the discretized problem (17). For this case, the
algorithm given in (14) turns out to be:
Algorithm 1 (Piecewise constant NSSC algorithm)

• For k = 1, 2, · · ·L + 1

• For i, j = 1, 2, · · ·nk:

Find c = argminsJ(u + sφk
i,j), (18)

and update u as u := u + cφk
i,j . (19)
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Figure 2: Illustration of the restriction process for a piecewise constant multigrid method from the fine 8× 8
grid (left) to the coarse 4× 4 grid (right). Here the middle plot shows the level 2 piecewise constants and each
symbol denotes a separate constant.

Figure 3: Illustration of the (inherent) interpolation process for a piecewise constant multigrid method from
the coarse 4 × 4 grid (left) to the fine 8 × 8 grid (right). Here the middle plot shows the interpolated level 2
piecewise constants and each symbol denotes a separate constant.

• End.

• End.

For k = 2, one element τk
i,j is split into 4 elements on the finest level. Thus, on the finest level,

sφk
i,j takes the values: [

s s
s s

]
.

For an element τk
i,j on a much coarser level, the value of sφk

i,j on the finest level looks like:




s s · · · s
...

...
...

...
s s · · · s


 .

To illustrate the setup, we show the restriction process in Figure 2 and the interpolation process in
Figure 3. Here each block represents a local constant patch. On the finest level b = 1, each pixel
is adjusted for adding the best local constant which is the same process of a local minimization (as
discussed). The patch size b× b may be made variable bi × bj if such a set {(k, `) | |uk,` − ui,j | < ε},
containing indices for a bi × bj block, is non-empty at the current iterate.

In [19], a one step Richardson iteration is used as an approximate solver for (18). We refer to
[19] for the details about how to solve (18) in an efficient manner.

5 A new piecewise constant NSSC algorithm with an adaptive sub-
space

In the last section, the standard multigrid subspaces for a piecewise constant finite element space are
used. Due to the nature of problem (17), it was found that such a standard approach is not sufficient
to achieve the global convergence. It turns out that using a new coarse mesh produced adaptively
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during the iterations provides a solution [19, 20]. Given u defined on the finest mesh and a threshold
constant γ, we say the two adjacent grid points (xi, yj) and (xi+1, yj) belong to the same patch if

|ui+1,j − ui,j | ≤ γ.

The same is used to classify two points (xi, yj) and (xi, yj+1). In this way, all the grid points (xi, yj)
can be grouped into a fixed number of patches depending on u and γ. Let {Ωi}nu

i=1 be the patches
obtained using u and γ. We then define

ψi = 1 on Ωi else ψi = 0, i = 1, 2, · · ·nu. (20)

We shall add the subspaces spanned by ψi to the decomposition for getting the correction values.
With these subspaces added, the new NSSC type algorithm is:
Algorithm 2 (Adaptive piecewise constant NSSC algorithm)

• For k = 1, 2, · · ·L + 1

• For i, j = 1, 2, · · ·nk:

Find c = argminsJ(u + sφk
i,j), and update u as u := u + cφk

i,j . (21)

• End.

• For i = 1, 2, · · ·nu:

Find c = argminsJ(u + sψi), and update u as u := u + cψi. (22)

• End.

• End.

The new subproblems (22) are solved using similar approximate solvers. This algorithm has been
explained and analysed in detail in [20].

Returning to our earlier remark on interpretation the approximation on the finest grid, it has been
proven in [12] that piecewise constant finite element functions alone cannot be used to approximate
the total variation of bounded variation functions. So our classification of the above algorithm as
a NSSC with piecewise constants, useful for understanding the algorithm, is not precise because
the minimization (finite difference) functional (17) used in this and the last section is not the total
variation of the corresponding piecewise constant function.

6 A piecewise linear type multilevel algorithm

In this section, we shall explain how to use NSSC algorithm for piecewise linear finite element
subspaces. For piecewise linear finite element spaces, we need to use triangular mesh over the
different levels. The triangular meshes are produced from the rectangular meshes obtained in the
last sections by divide each rectangle into two triangles using the diagonal of a negative slope. Let
φk

i,j be a continuous function which is a linear function over each triangular element on the kth level
satisfying

φk
i,j(xi, yj) = 1 and φk

i,j(xl, ym) = 0, l 6= i,m 6= j. (23)

Then, {φk
i,j}nk+1

i,j=1 forms a basis for the piecewise linear finite element space over level k. The number
nk is defined as before. Assume that for the given image z on the finest level with n× n pixels, the
desirable image u (discrete) uniquely defines a piecewise linear function u in Ω.

If we use NSSC algorithm for the subspaces spanned by all the basis functions over all the levels
as given in (23), we will get:
Algorithm 3: (Piecewise linear NSSC algorithm)
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Figure 4: A two dimensional basis function φk
i,j . Note on the right plot, only the weights v` along a diagonal

are shown. Here 3 defines the outer boundary of the 2D basis function, © shows the nodes where the
corresponding weights are 1/4, 2 shows the nodes where the corresponding weights are 1/2, . shows the nodes
where the corresponding weights are 3/4 and the central node 3 defines the weight of 1.

• For k = 1, 2, · · ·L + 1

• For i, j = 1, 2, · · ·nk + 1:

Find c = argminsJ(u + sφk
i,j), and update u as u := u + cφk

i,j . (24)

• End.

• End.

The subproblems (24) are solved by approximate solvers in [28]. The only difference from the piece-
wise constant case is the evaluation of the values of sφk

i,j . In Figure 4, the value of a basis function
φk

i,j on the coarse level k = 3 is displayed.
Here it is important to point out that the subproblem in (24) is not expensive to solve due to the

compact support of φk
i,j . In fact, we can simplify the functional J(w + sφk

i,j), s ∈ R, much further
for efficient implementation [28]. We remark that [12] shows that piecewise linear finite element
functions can be used to approximate a special variant of the standard total variation (as in (1))
of bounded variation functions. However justification for the convergence of Algorithm 3 is not yet
available.

7 Algorithmic complexities

For linear problems, the cost per iteration for the multigrid iteration is typically O(N) flops (floating
point operations), where N is the total number of degrees of freedom. For our nonlinear problems
[19, 28], the cost per iteration by our Algorithm 1 is

2(L + 1)N + (2 + 4κ/3)N ≈ O(N log N)

and by Algorithm 3 is
(5N + 32κN)(L + 1) ≈ O(N log N),

where we assume that κ = O(1) steps are needed for a typical inner iteration. Here the reason why
Algorithm 3 appears slightly more expensive than Algorithm 1 is that for a typical block of pixels
the former only involves boundary pixels interaction while all pixels in a block in the latter interact
with each other.

By way of comparisons, the second order cone method [33] costs O(N
√

N) while most time-
marching methods (including the AOS method) cost O(κN) where κ is the number of iterations.
In the explicit Euler method, ∆t ≈ h2 ≈ 1/N . So the complexity for marching to t = O(1) with
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κ = O(N) will be O(N2) while the AOS method [74] is known to be 10 times faster than this. As
mentioned, the cost of a fixed iteration method may not be easy to estimate as the inner solver is
efficient and the outer iteration can be quite slow.

8 Numerical experiments

To demonstrate the effectiveness of our Algorithms 1 and 3, we now present some experimental results.
We remark that the above proposed algorithms have not been applied to the image minimisation
problem (1) before [19, 28], although attempts on solving (4) have been made.

Effectiveness testing. We have tested the algorithms’ effectiveness by solving many image
denoising problems. It appears that usually a few multigrid cycles (typically 4) are sufficient to
obtain an acceptable and converged result. However, readers may be more interested in comparisons
with existing algorithms. Below we shall focus on this aspect. It should be remarked that some
comparisons of multigrid methods with non-multigrid methods such as the fixed point iterations and
time marching schemes may be found in [56]; the result is not surprising in that the former is faster
whenever it converges.

Comparisons with an established method. There are many aspects of the discussed algo-
rithms that could be compared with other methods. Here we choose to compare with the well-known
method (perhaps the best but there are strong competitors from §2 not compared yet) of Chan-
Golub-Mulet (CGM) [23]. However our task of comparing with CGM becomes somewhat easier
because the CGM method ‘fails’ in 2 cases: (i) when the image size N becomes large (due to ill-
conditioning); (ii) when β ≤ 10−32 (due to singularity). Here (i), not (ii), may be fixable by finding
a better preconditioner (a non-trivial task) but no such work is available. In both cases, our method
would converge although the local solvers take a few more iterations.

It may be of interest to show some results from parameter ranges where the CGM performs well:
we take β = 10−10, 10−20 and 3 test examples in Figs. 5, 6 and 7. Here we mainly compare the
solution’s visual quality and the PSNR value which is the peak signal-to-noise ratio (PSNR) defined
by (see e.g. [17])

PSNR(u,w) = 10 log10

2552

1
mn

∑
i,j(ui,j − wi,j)2

,

where wi,j and ui,j denote the pixel values of the restored and the original images respectively. One
observes that our multilevel methods only require 3-5 cycles to obtain a comparable result.

Clearly as displayed in the vertical labels of the plots, the PSNR values of the results from our
algorithms are quite close to the CGM results. Comparing CPUs is a harder task on the MATLAB
platform; a more convincing test would be to use C or Fortran in some optimal implementation.
Nevertheless, our observation for the relatively small 256×256 examples is that Algorithm 1 is about
3 faster than the CGM [23] while Algorithm 3 is about as fast as [23]. This may be predicted by the
complexity results shown above.

However our new algorithms are evidently more robust (without having to concern about what
parameters to use) and as multilevel methods they have a scope to achieve even better performance
with large images and future parallelization.

9 Conclusions

This paper first surveyed various solution techniques for the image denoising problem, then discussed
multigrid methods for solving total variation minimization via the differential equation approach, and
finally presented two related multilevel algorithms for solving total variation minimization directly.
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Figure 5: Comparison of Algorithm 1 with the CGM method [23] for test example P1: α = 30 and β = 10−10
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Figure 7: Comparison of Algorithm 3 with the CGM method [23] for test example P3: α = 30.

The subspace correction based algorithms differ from previous attempts for solving similar optimiza-
tion problems. Numerical tests show that firstly and most importantly the new multilevel algorithms
are robust and fast, and secondly they compare favorably with the well-known CGM algorithm [23],
which is not a multilevel method.
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[32] José R. Galo, Isidoro I. Albarreal, M. Carmen Calzada, José Luis Cruz, Enrique Fernández-Cara, and
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