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A New Variational Model for Removal of
Combined Additive and Multiplicative
Noise and a Fast Algorithm for Its

Numerical Approximation

Noppadol Chumchob, Ke Chen, and Carlos Brito-Loeza

Variational image restoration models for both additive and multiplicative noise removal are rarely
encountered in the literature. This paper proposes a new variational model and a fast algorithm for
its numerical approximation to remove independent additive and multiplicative noise from digital
images. Two previous works by [L. Rudin, S. Osher and E. Fatemi, Phys. D, 60 (1992), pp. 259-268]
and [Z. Jin and X. Yang, J. Math. Anal. Appl., 362 (2010), pp. 415-426] are used to develop the new
model. As a result, developing a fast numerical algorithm is difficult because the associated Euler-
Lagrange equation is highly nonlinear and standard unilevel iterative methods are not appropriate.
To this end, we develop an efficient nonlinear multigrid approach via a robust fixed-point smoother.
Numerical tests using both synthetic and realistic images not only confirm that our new model
delivers quality results but also that the proposed numerical algorithm allows a very fast numerical
realization of the model.

Keywords. Additive noise, image denoising, multiplicative noise, nonlinear multigrid, total vari-
ation, variational models.

1 Introduction

In many real world applications, images are usually contaminated with noise,
either because of the image acquisition process, or because of naturally occur-
ring phenomena. Therefore, the process of estimating the unknown image of
interest from the available noisy image, known as image denoising or image
restoration, plays an important role in various areas. Applications that require
a restoration step range from art, astronomy, astrophysics, biology, chemistry,
criminology, geophysics, physics, and other areas involving imaging techniques.
As is well known, the so-called additive noise (AN) model is commonly

found in acquiring images via digital devices. Not surprisingly, most of the
literatures mainly deal with this type of image formation models. In the AN
model, one sought to recover an original (unknown) image u : Ω ⊂ R2 → V ⊂
R+
0 = R+ ∪ {0} from the noisy (known) image z : Ω → V corrupted by some

unknown AN η as follows:

z = u+ η. (1)

There are different types of noise. However, the so-called additive zero-mean
Gaussian white noise has been attracted much attention and extensively in-
vestigated for many years. We refer the reader to the literature [5, 21] and
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references therein for an overview of the subject. Without loss of generality,
we assume that Ω = [0, 1]2 ⊂ R2 and V = [0, 1] for 2D gray intensity images
throughout this paper.
According to [3, 4, 36–41, 45, 50, 52] and other references, there are many

practical applications involving the so-called multiplicative noise (MN), also
known as speckle. It is commonly found in the coherent imaging system, such as
synthetic aperture radar (SAR) and sonar, and ultrasound and laser imaging.
In the MN model, the original image has been corrupted by some unknown
MN η as given by

z = uη. (2)

Without loss of generality, we can assume that u and η in (2) are positive in
the noise model. Unlike AN models, the noisy signals in the corrupted images
are much more difficult to be removed, mainly not only because of the multi-
plicative nature between the noise and the original image, but also because of
the noise distributions, which are generally non-Gaussian, commonly assumed
to be Gamma and Rayleigh distributions.
Over the past decade, a wide variety of AN and MN removal methods have

been proposed to recover the true image from the noise models given by (1) and
(2). These methods include traditional filtering [3,41], wavelets techniques [8,
29], stochastic approaches [31], principal component analysis-based approaches
[61,62], and variational methods [4,5,13,21,37–40,44,45,50]. It has long been
known that finding u via (1) or (2) is a very ill-conditioned problem because
the solution is highly sensitive to the noise η. The variational approaches with
total variation (TV)-based regularization, in particular the first TV-based AN
removal model by Rudin, Osher, and Fatemi [44] (also known as ROF model)
and the first TV-based MN removal model by Rudin, Lions, Osher [45] (also
known as RLO model), are among the most famous ones to offer superior
image restoration quality. However, much improvement is still required.
From a practical point of view, a fundamental assumption concerning only

pure AN or MN cannot be always true. For instance, recent studies by Hi-
rakawa and Parks [36] and Lukin et al. [52] confirm this fact. In [36], the
results show that

z = u+ (k0 + k1u)η, (3)

where k0 and k1 are constants and η represents Gaussian white noise with
variance 1, is the good noise model for Agilent Technologies camera evaluation
board HDCP-2000 equipped with 300 K pixel CMOS sensor and capturing raw
sensor data. In [52], the authors reported that the AN component cannot be
neglected, especially for images formed by side look aperture radars (SLARs).
In order to restore the observed images corrupted by the combination of the

AN and MN, a feasible option is to apply a two-step approach by first using an
additive-restoration technique followed by a multiplicative-restoration one or
the other way round. However, this two-step approach does not appear to be
optimal due to increased high computational cost and approximation of (3).
Ideally one would like to use only a one-step method. As far as we know, there
are few image restoration techniques devoted to this type of the AN and MN
noise removal problems. For example, in [36] a robust method for restoring
the observed images corrupted with the additive, multiplicative, and mixed
noise was introduced by constructing a so-called image-patch model from a
linear combination of noisy patches and then fitting this model to the real-
world image in the total least square sense. In [52] a discrete cosine transform
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method based on local adaptive filtering was developed to remove noise in
automatic or blind manner. Although these former two methods offer good
image quality, they are computationally expensive for high resolution images.
To the best of our knowledge, there are no variational models devoted to

the problem of removing noise from images corrupted by mixed AN and MN.
The difficulties are not only to design an effective image restoration model,
but also to develop an efficient numerical solution for the associated large
system of nonlinear equations arising from high resolution images. The aim
of this project is to cover both aspects by designing a new TV-based image
restoration model and developing a robust nonlinear multigrid (MG) method.
The outline of this paper is organized as follows. Section 2 reviews two

effective models for removing AN and MN using TV regularization. Section
3 introduces our new variational model, followed by numerical techniques for
solving the associated Euler-Lagrange equation in Section 4. Section 5 presents
an efficient MG method following analysis the above proposed iterative solvers
as MG smoothers. Experimental results from synthetic and realistic images
illustrating the effectiveness of the new model and the efficiency of our MG
method are shown in Section 6 before conclusions in Section 7.

2 Review of TV-based image restoration models

In the literature, TV-based regularization has been proven to be a very valu-
able tool for image restoration, and is used extensively in many practical ap-
plications. However, it has to combine with a suitably chosen data fitting term
in leading to excellent image restoration results. This section first reviews the
current state-of-the-art models for the AN and MN removal problems from
which our new model was developed. As can be seen, each model includes the
nonlinear fitting term able to offer very high quality of restored images.

2.1 TV-based AN removal model

Among all variational approaches for the AN removal problems, the classical
ROF model [44] represented by

argmin
u∈BV (Ω)

{∫
Ω
|∇u|dΩ+ α

2

∫
Ω
(u− z)2dΩ

}
(4)

is well known for preserving sharp edges in recovered images. Here BV (Ω)
denotes the bounded variation space and α > 0 is the regularization parameter
deciding the amount of the noise to be removed. In the literature, a variety of
fast numerical methods have been extensively studied, e.g. [1, 5, 14–19, 21, 22,
27, 28, 30, 47, 53–56, 60]. This makes the ROF model a very popular approach
in the area of image restoration.

2.2 TV-based MN removal model

The MN noise models have been extensively studied over the last decades.
However, in the literature the RLO model [45]

argmin
u∈BV (Ω)

{∫
Ω
|∇u|dΩ+ α1

∫
Ω

z

u
dΩ+ α2

∫
Ω
(
z

u
− 1)2dΩ

}
(5)



Variational Model for Removal of Combined Additive and Multiplicative Noise 143

and the Aubert-Aujol (AA model) [4]

argmin
u∈S(Ω)

{∫
Ω
|∇u|dΩ+ α

∫
Ω
(log u+

z

u
)dΩ

}
(6)

are two main variational models, where S(Ω) = {u ∈ BV (Ω), u > 0} and α1,
α2 are the weighted parameters. We note first that the fitting terms of RLO
model (5) are under the assumption that the mean of the MN is equal to 1
and the variance is known. We also note that the fitting term of AA model
derived from a maximum a posteriori (MAP) estimation is specifically devoted
to recover the true image u from a noisy image z, corrupted by Gamma noise
with mean equal to 1. As far as we know, the theoretical analysis of (5) has
not yet been studied thoroughly, whereas some interesting analysis of (6) was
done in [4].
Recently, Jin and Yang [39] applied the exponential transformation u →

eu introduced by [38] with the fitting term of AA model and proposed the
following restoration model

argmin
u∈BV (Ω)

{∫
Ω
|∇u|dΩ+ α

∫
Ω
(u+ ze−u)dΩ

}
. (7)

They proved the existence and uniqueness of a minimizer to the variational
problem (7) in BV (Ω). To compute a numerical solution, the authors used an
explicit method for the evolution equation corresponding to (7).
As can been seen, both models (5) and (7) are based on the TV regularization

and only differ in their fitting terms. Other regularization terms may be used
to improve their results and avoid the staircase effect; see higher order model
in [13] and references therein.

3 The proposed variational image restoration model

We now introduce our new variational model for restoring images corrupted
by both AN and MN. Assume that AN and MN are independent or, in other
words, not related to each other. This situation is likely to happen in many
real-life applications when they come from two different sources. For instance,
synthetic aperture radar (SAR) images are usually corrupted by the MN as
a consequence of image formation under coherent radiation [2] and the AN
due to thermal vibrations in the electronic components of the image capture
devices. Thus an appropriate image formation model for this case is

z = u+ k0η + k1uζ, (8)

where η and ζ are the AN and MN components, respectively.
Most multiplicative models usually assume that η is less significant than ζ

and therefore dropping the first two terms from (8) leads to the MN model as
given in (2). In this work we do not drop any term from (8) and propose the
following minimization to remove both AN and MN:

argmin
u∈BV (Ω)

{J [u] =
∫
Ω
|∇u|dΩ+

α1

2

∫
Ω
(u− z)2dΩ+ α2

∫
Ω
(u+ ze−u)dΩ}, (9)

where α1, α2 > 0 are the regularization parameters used to balance between
the AN and MN fitting terms.
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3.1 Existence and uniqueness of the solution

Note that existence of the solution can be proved easily using the standard
arguments. To this end, we only need to show BV-coercivity, weakly lower
semi-continuity of J [u]. The BV-coercivity of J [u] with u ∈ L1(Ω) follows
provided J [u] → +∞ as ∥u∥BV → +∞, where ∥ · ∥BV is the total variation
norm, and is analogous to

∫
Ω |∇u|dΩ for u ∈ C1

0 (Ω); see [1]. For (9), we have

∫
Ω
(u− z)2dΩ ≥ 0 (10)

and ∫
Ω
(u+ ze−u)dΩ ≥ 0. (11)

It follows that

∥u∥BV ≤ J [u]

up to a constant. Thus, the coercivity condition holds. Now, the weakly lower
semi-continuity of (10) comes from the weakly lower semi-continuity of the
norms on Banach spaces. The lower semi-continuity also holds for (11) as
proven in [39] and for ∥u∥BV as proven in [1]. Finally, with J [u] being lower
semi-continuous and BV-coercive, the existence of the solution is guaranteed
by [1, Thm 3.1]. The solution is unique due to each term in J [u] being convex,
as also shown in [1, 39].

3.2 The Euler-Lagrange equation

The minimizer of the energy functional J in (9) satisfies the Euler-Lagrange
(EL) equation given by the following nonlinear partial differential equation
(PDE):

−K(u) + α1(u− z) + α2(1− ze−u) = 0 in Ω (12)

subject to the natural boundary conditions:

∂u

∂n
= 0 on ∂Ω, (13)

where K(u) = ∇ · ( ∇u
|∇u|β ), |∇u|β =

√
|∇u|2 + β, β > 0 is a small constant to

avoid division by zero, and n is the unit outward normal vector on the image
boundary ∂Ω. We refer the reader to [39,44] for deriving (12).

4 Discretization of the EL equation and its numerical methods

In this section, we outline the finite difference (FD) discretization and discuss
some numerical methods for (12).
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4.1 Finite difference discretization

For sake of clarity, let the discrete domain be denoted by

Ωh =
{
x ∈ Ω|x = (xi, yj)

⊤ = ( (2i−1)hx

2 , (2j−1)hy

2 )⊤, 1 ≤ i ≤ nx, 1 ≤ j ≤ ny

}
,

consisting of nx × ny cells of size hx × hy with grid spacing h = (hx, hy) =
(1/nx, 1/ny) and let (uh)i,j = uh(xi, yj) denote the grid function. Applying
finite difference (FD) approximations based on the cell-centered grid points to
discretize (12), the discrete EL equation at a grid point (i, j) over Ωh is given
by

−Kh
(
uh
)
i,j

+ α1(
(
uh
)
i,j
−
(
zh
)
i,j
) + α2(1−

(
zh
)
i,j

e−(uh)i,j )︸ ︷︷ ︸
Nh(uh)i,j

=
(
gh
)
i,j

(14)
with the following notation

Kh
(
uh
)
i,j

=

[
δ−x
hx

(
D
(
uh
)
i,j

δ+x (u
h)i,j

hx

)
+
δ−y
hy

(
D
(
uh
)
i,j

δ+y (u
h)i,j

hy

)]
.

Here
(
gh
)
i,j

= 0; on the finest grid in MG setting this notation is useful

shortly. Without loss of generality, in this work we consider the simple case
n = nx = ny and h = hx = hy = 1/n for all grid functions. This leads to

−Kh
(
uh
)
i,j

= (1/h2)((Σh)i,j(u
h)i,j − (Σ

h
)i,j(u

h)i,j),(
Σh
)
i,j

(uh)i,j = (D1(u
h)i,j +D2(u

h)i,j + 2D3(u
h)i,j)(u

h)i,j ,

(Σ
h
)i,j(u

h)i,j = D1(u
h)i,j(u

h)i−1,j +D2(u
h)i,j(u

h)i,j−1) +D3(u
h)i,j((u

h)i+1,j + (uh)i,j+1),

D
(
uh
)
i,j

= (
√

(δ+x (uh)i,j/h)2 + (δ+y (uh)i,j/h)2 + β)−1,

D1

(
uh
)
i,j

= D
(
uh
)
i−1,j

, D2

(
uh
)
i,j

= D
(
uh
)
i,j−1

, D3

(
uh
)
i,j

= D
(
uh
)
i,j

,

δ±x1

(
uh
)
i,j

= ±
(
(uh)i±1,j − (uh)i,j

)
, δ±x2

(
uhl

)
i,j

= ±
(
(uh)i,j±1 − (uh)i,j

)
.

We note that the symbols h and (·, ·)h will be dropped for simplicity in the
following section.

4.2 Time marching methods

As is well known, a time marching method is one of convenient ways to solve
the resulting EL equations like (12). The main idea is to introduce an artificial
time variable t and compute the steady-state solution of the time-dependent
nonlinear PDE of the form:

∂tu(x, t) +N (u(x, t)) = g(x).

In order to overcome the nonlinearity of N , the so-called Euler’s explicit



146 Chumchob, Chen and Brito

scheme can be conveniently applied, and the iteration is then given by

∂tu(x, tk+1) = g(x)−N (u(x, tk)), k = 0, 1, 2, 3, ...,

where u(x, t0) is some initial solution, typically u(x, t0) = z(x).
For the time discretization we introduce a time-step τ > 0, and then u is

updated at the time step k + 1 by

u(x, tk+1) = u(x, tk) + τ [g(x)−N (u(x, tk))] . (15)

Therefore, the FD discretized version of equation (15) given in Section 4.1 can
be represented at a grid point (i, j) by

(u[k+1])i,j = (u[k])i,j + τ [(g)i,j −N (u[k])i,j ]. (16)

We note that this numerical scheme is easy to implement, but extremely slow
to converge because the length of the time-step τ is required to be a very small
number for stability reasons. For the second order PDEs like (16), τ ∼ O(h2).
In order to speed up the convergence of (16), we may apply the fully implicit

scheme, and then (u[k+1])i,j is updated by

(u[k+1])i,j = (u[k])i,j + τ [(g)i,j −N (u[k+1])i,j)]. (17)

To overcome the nonlinearity of N , we may globally linearize (17) respect to
the (k+1)th time-step using the method of ‘frozen coefficients’ as well known
for variational approaches related to the TV operator (see e.g., [6,15–17,22,30,
47,48]), and obtain the semi-implicit scheme as given by the following system
of linear elliptic PDEs:

[1+τα1−τKlin(u[k])i,j ](u
[k+1])i,j = (u[k])i,j+τ(α1(z)i,j+α2((z)i,je

−(u[k])i,j )−1),
(18)

where

−Klin(u[k])i,j(u
[k+1])i,j = (1/h2)((Σ[k])i,j(u

[k+1])i,j − (Σ
[k]
)i,j(u

[k+1])i,j).

Therefore, the update formula determined by a lexicographical ordering in a
matrix-vector form can be written as

u[k+1] = ((1 + τα1)I+τKlin(u[k]))−1(u[k] + τ(α1z− α2(1− ze−u[k]

)), (19)

where I is the identity matrix. Note that the additive operator splitting (AOS)
scheme by [57] can be applied with (19) in speeding up this time marching
scheme.

4.3 Fixed point methods

As is well known, fixed point (FP) methods are successfully applied in solving
the EL equations related to the TV minimization; see e.g. [6, 10–13, 20, 23–
26, 30, 37, 47, 48, 55]. In this section we present two different FP methods in
solving the EL equation (12).

4.3.1 Global fixed-point (GFP) method. For the first FP method, the non-
linear terms 1/|∇u|β and e−u represented in (12) or D (u)i,jand e−(u)i,j in (14)
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may be linearized or frozen globally at a previous FP step ν. This yields the
resulting linearized system

N[u[ν]]u[ν+1] = G[u[ν]], ν = 0, 1, 2, ... (20)

where

N[u[ν]] = −∇ · ( ∇
|∇u[ν]|β ) + α1I

and

G[u[ν]] = g + α1z + α2(ze
−u[ν] − 1),

typically u[0] = z. Classified by its ingredients, we shall name this FP method
the global FP (GFP) method.
As a common way to solve (20) for each GFP or outer step ν, we use the

successive over-relaxation (SOR) method with the relaxation parameter ω ∈
(0, 2) and then the new step at a grid point (i, j) is given by

(u[ν+1,k+1])i,j = (1− ω)u[ν+1,k])i,j + ω(N[u[ν]])−1
i,j (G[u[ν,k+1/2]])i,j , (21)

where

(N[u[ν]])−1
i,j = 1

(1/h2)(Σ[ν])i,j+α1
(22)

and

(G[u[ν,k+1/2]])i,j = (g)i,j+α1(z)i,j+α2((z)i,je
−(u[ν])i,j−1)+(1/h2)(Σ

[ν]
)i,j(u

[ν])i,j .
(23)

Here the superscripts k, k + 1/2, and k + 1 denote the current, intermediate
and new approximations computed by the SOR method, respectively.
Obviously, for each GFP step ν the linearized system (20) is strictly or

irreducibly diagonally dominant. This guarantees the existence of a unique
solution and global convergence of the SOR iterations [43, 46]. Moreover, the
GFP method shows the interaction between the outer iteration that overcomes
the nonlinearity of the discrete operator N in (14) at each outer step ν and
the SOR method that solves the resulting linear system of equations at each
corresponding inner step k. Instead of solving the linearized system (20) with
very high precision, the SOR method or inner iteration can perform only a few
iterations to obtain an approximate solution at each outer step ν. This is likely
the so-called inexact lagged-diffusivity FP method which have been widely used
for solving other problems in image processing applications related to the TV
operator; see e.g. [6,10–13,20,23–26,30,37,47,48,55]. This procedure leads to a
slight difference of convergence in the GFP scheme when it is used as a stand-
alone solver, whereas the computational costs significantly reduce. Moreover,
the relaxation parameter ω has a strong influence on the convergence speed.
We usually use ω > 1, typically ω = 1.5, because it results in speeding up the
convergence by many orders of magnitude faster than those of the Gauss-Seidel
(GS) approach (ω = 1). We also note that other basic iterative techniques such
as line relaxation or preconditioned conjugate gradient (PCG) method may
also be used as an inner solver but they are computationally more expensive
than the SOR method and therefore not recommended.
Finally, the numerical implementation to compute one iteration of the pro-

posed GFP method (20) based on the SOR method (21) can be summarized
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as follows:

Algorithm 4.1 Our Proposed GFP method

Denote by
v the restored image

z the noisy image

g the RHS (right-hand side) term of (14)

α1 the weighted parameter of the ROF fitting term in (9)

α2 the weighted parameter of the JY fitting term in (9)

ω relaxation parameter

MAXSOR the maximum number of SOR iterations

[v]← GFP (v, z, g, α1, α2, ω,MAXSOR)

• Use input arguments to compute (N[v])−1
i,j (22) and

the first three terms of (G[v])i,j in (23) for all 1 ≤ i, j ≤ n
• Perform SOR steps for solving (20)
− for k = 1 : MAXSOR do
− for i = 1 : n do
− for j = 1 : n do

− Compute the last term of (G[v])i,j in (23)
− Updating (v[k+1])i,j using (21)

− end
− end

− end

4.3.2 Local fixed-point (LFP) method. Apart from global linearization,
the alternative approach for solving the nonlinear discrete systems like (14)
is to use methods using only local linearization; see e.g. [6, 10–13, 47, 48] and
references therein. The main idea is to solve a single nonlinear equation in the
given nonlinear system for a (single) unknown using a numerical method of
nonlinear equations in one variable.
More precisely, consider the corresponding nonlinear equation for the un-

knowns (u)i,j−1, (u)i−1,j , (u)i,j , (u)i+1,j (u)i,j+1 given by (14) as follows:

(1/h2)((Σ)i,j(u)i,j−(Σ)i,j(u)i,j)+α1((u)i,j−(z)i,j)+α2(1−(z)i,j e
−(u)i,j ) = (g)i,j .

Therefore, at the kth iteration a nonlinear GS step is given by

(1/h2)((Σ[k+1])i,j(u
[k+1])i,j − (Σ

[k+1]
)i,j(u

[k+1])i,j)

+α1((u
[k+1])i,j − (z)i,j) + α2(1− (z)i,j e

−(u[k+1])i,j ) = (g)i,j , (24)

where

(Σ[k+1])i,j(u
[k+1])i,j = (D1(u

[k+1])i,j +D2(u
[k+1])i,j + 2D3(u

[k+1])i,j)(u
[k+1])i,j ,

(Σ
[k+1]

)i,j(u
[k+1])i,j = D1(u

[k+1])i,j(u
[k+1])i−1,j +D2(u

[k+1])i,j(u
[k+1])i,j−1)

+D3(u
[k+1])i,j((u

[k+1])i+1,j + (u[k+1])i,j+1).

If the nonlinear terms D∗(u
[k+1])i,j and e−(u[k+1])i,j are simply replaced by

D∗(u
[k])i,j and e−(u[k])i,j , we obtain the so-called Gauss-Seidel-fixed point or

Gauss-Seidel-Picard relaxation and we shall name this numerical scheme the
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local FP (LFP) method. As a result, we found experimentally that this relax-
ation method is inefficient in leading to fast convergence. An improvement can
be simply obtained by using a few more steps of FP iterations with respect to
the relaxation parameter ω ̸= 1 (typically MAXFP = 2 and ω = 1.6, where
MAXFP denotes the maximum number of FP iterations) as follows:

(u[k+1])i,j = (1− ω) (u[k])i,j + ω(u[k+1])i,j , (25)

where

(u[k+1])i,j =
(G[u[ν]])i,j + (1/h2)((Σ

[k;ν]
)i,j(u

[k+1/2;ν])i,j)

(1/h2)(Σ[k;ν])i,j + α1
, (26)

(G[u[ν]])i,j = (g)i,j + α1 (z)i,j + α2((z)i,j e
−(u[ν])i,j − 1), (27)

(Σ
[k;ν]

)i,j(u
[k+1/2;ν])i,j = D1(u

[k;ν])i,j(u
[k+1])i−1,j +D2(u

[k;ν])i,j(u
[k+1])i,j−1

D3(u
[k;ν])i,j((u

[k])i+1,j + (u[k])i,j+1) (28)

(Σ[k;ν])i,j = D1(u
[k;ν])i,j +D2(u

[k;ν])i,j + 2D3(u
[k;ν])i,j+, (29)

D1(u
[k;ν])i,j = (

√
(((u[ν])i,j − (u[k+1])i−1,j)/h)

2 + (((u[k])i−1,j+1 − (u[k+1])i−1,j))
2 + β)−1,

D2(u
[k;ν])i,j = (

√
(((u[k+1])i+1,j−1 − (u[k+1])i,j−1)/h)

2 + (((u[ν])i,j − (u[k+1])i,j−1))
2 + β)−1,

D3(u
[k;ν])i,j = (

√
(((u[k])i+1,j − (u[ν])i,j)/h)

2 + (((u[k])i,j+1 − (u[ν])i,j)/h)
2 + β)−1,

Finally our proposed method for performing one GS iteration with ω ̸= 1
(SOR iteration) can be summarized as follows:

Algorithm 4.2 Our Proposed LFP method

Denote by
v the restored image

z the noisy image

g the RHS (right-hand side) term of (14)

α1 the weighted parameter of the ROF fitting term in (9)

α2 the weighted parameter of the JY fitting term in (9)

ω relaxation parameter

MAXFP the maximum number of FP iterations

[v]← LFP (v, z, g, α1, α2, ω,MAXFP )

− for i = 1 : n do
− for j = 1 : n do
− Set (v[ν=0])i,j = (v)i,j
− for ν = 0 :MAXFP do

− Compute (G[v[ν]])i,j using (27)

− Compute (Σ
[ν]
)i,j(v

[ν])i,j using (28)
− Compute (Σ[ν])i,j using (29)
− Compute (v)i,j using (26)
− Set (v[ν+1])i,j = (v)i,j

− end
− Use (v[ν=0])i,j , (v)i,j and (25) to compute (v)i,j

− end
− end
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We have so far presented four numerical methods for solving (12). Obviously
the explicit method in (16) is less efficient than the semi-implicit one in (19)
because the time-step τ is required to be very small for stability reasons. From
several tests on both synthetic and realistic images, we found first that both
GFP and LFP methods are much faster than those of the semi-implicit time
marching method in fulfilling the necessary condition for being a minimizer
of the variational problem represented by (9), i.e. in achieving convergence,
because the linear system has to be solved many times with changing the RHS
term of in (19). We also found that there is no significant difference in their
convergence behavior between GFP and LFP methods when each of them has
been used as a stand-alone solver for solving (14).
Although either can be recommended as a unilevel method, it is not efficient

as a MG method. Our next task is to select a suitable smoother from both
methods in designing a convergent MG method for solving (14). The following
section will be devoted to this topic.

5 A nonlinear multigrid method

MG techniques [9, 34, 51, 58, 59] have been proved to be very useful in the
context of variational image processing for solving large systems of linear or
nonlinear equations arising from high resolution images in real-life applica-
tions; see e.g. [6, 7, 10–13, 15, 23–26, 30, 47, 48, 53]. The basic idea of a MG
method is to smooth high frequency components of the error of the solution
on a fine grid by performing a few steps with a smoother (an iterative relax-
ation technique) such that a smooth error term can be well represented and
approximated on a coarser grid. After a residual equation has been solved on
the coarse grid, a coarse-grid correction is interpolated back to the fine grid
and used to correct the fine grid approximation. Finally, the smoother is per-
formed again in order to remove some new high frequency components of the
error introduced by the interpolation. This is known as a two-grid cycle, and
with recursive application it can be extended to a MG method.
As is well known, a working MG has three main components: (i) Smoothing

via an iterative method; (ii) Restriction from a fine grid to a coarse grid; (iii)
Interpolation from a coarse grid to a fine one. On the coarsest grid, an effective
unilevel solver is used for accurate solution; here we shall use the semi-implicit
method represented by (19). Without reducing the importance of the restric-
tion and interpolation operators, the efficiency of every MG method strongly
relies on the efficiency of the relaxation method, also known as smoother, used
at each level in reducing (or smoothing) the high frequency components of the
error. We shall first use the so-called local Fourier analysis (LFA) to decide
which method (GFP or LFP) is better suited for our purpose before present-
ing an overall NMG algorithm. As it turns out, the LFP method is indeed the
better method for being an effective smoother.

5.1 Local Fourier analysis of GFP and LFP smoothers

LFA is a valuable tool to analyze the smoothing properties of smoothers used
in MG methods. Although LFA was originally developed for discrete linear
operators with constant coefficients on infinite grids, it can also be applied to
more general nonlinear equations with varying coefficients such as the discrete
versions of (12). To this end, first an infinite grid is assumed to eliminate the
effect of boundary conditions and second it is also assumed that the discrete
nonlinear operator can be linearized (by freezing coefficients) and replaced
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locally by a new operator with constant coefficients [51]. This approach has
proved to be very useful in the understanding of MG methods when solving
nonlinear problems; see for instance [6, 7, 10–13,15, 23–26,32, 33, 35, 42, 49] for
interesting examples and discussions.
For linear problems, iterative methods such as damped Jacobi or Gauss-

Seidel (GS) methods are usually enough to rapidly reduce high frequencies of
the underlying error. However for nonlinear problems, non-standard smoothers
are often required and their efficiency in smoothing is the decisive factor in
determining whether a given MG is convergent or not. For nonlinear and
anisotropic problems like (12), developing such an effective smoother is by no
means a trivial task. A quantitative measure of the smoothing efficiency for a
given algorithm is the smoothing factor denoted by µ from a LFA and numer-
ically computed for test problems, which is defined as the worst asymptotic
error reduction, by performing one smoother step, of all high-frequency error
components [51,59].
Below we shall compute the smoothing factor of GFP and LFP methods

(as our GFP and LFP smoothers shortly) applied with the discrete linear
equation N[u]u = G[u]. Here u and u denote the exact solution and the
current approximation and

N[u] = −∇ · ( ∇
|∇u|β ) + α1I

and

G[u] = g + α1z + α2(ze
−u − 1)

the resulting discrete (linear) operators obtained from the linearization at u
by freezing coefficients in (14) at some FP step over the infinite grid

Ω∞ = {x ∈ Ω|x = (xi, yj)
⊤ = ( (2i−1)h

2 , (2j−1)h
2 )⊤, i, j ∈ Z2}.

Note that the symbols h and (·, ·)hi,j will be dropped for simplicity.

Let φ(θ,x) = exp(iθx/h) be grid functions θ = (θ1, θ2)
⊤ ∈ Θ = (−π, π]2,

x ∈ Ω∞, and i =
√
−1. It is important to remark that due to the locality

nature of LFA, our analysis applies to each grid point separately, i.e. µ is
matrix with its (i, j) entry representing the smoothing factor for grid point
ξ = (i, j). Hence we define µloc = µ(ξ) as the local smoothing factor and µ̄loc

as the worst possible value of µloc over Ω
∞. Thus for GFP and LFP methods,

we have

µloc = max
ξ∈Ω∞

h

µloc.

To determine µloc we consider the local discrete system N(ξ)u(ξ) = G(ξ)
centered and defined only within a small neighborhood of ξ. By using the

splittingN(ξ) = N
+
(ξ)+N

−
(ξ), it is possible to write the local inner iterations

of GFP and LFP methods with ω = 1 as

N
+
(ξ)unew(ξ) +N

−
(ξ)uold(ξ) = G(ξ) (30)

where uold(ξ) and unew(ξ) stand for the approximations to u(ξ) before and
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after the inner smoothing step, respectively. Here

N
+
(ξ) =

 0 0 0
−D2(u(ξ)) Σ(ξ) 0

0 −D1(u(ξ)) 0

 and N
−
(ξ) =

0 −D3(u(ξ)) 0
0 0 −D3(u(ξ))
0 0 0

 .

By subtracting (30) from N(ξ)u(ξ) = G(ξ) and defining enew(ξ) = u(ξ) −
unew(ξ) and eold(ξ) = u(ξ)− uold(ξ) we obtain the local system of error equa-
tions

N
+
(ξ)enew(ξ) +N

−
(ξ)eold(ξ) = 0 (31)

or

enew(ξ) = S(ξ)eold(ξ) (32)

where S(ξ) = −[N+
(ξ)]−1[N

−
(ξ)] is the amplification factor. The effect of

S(ξ) on the grid functions φ(θ,x) within Θhigh = Θ\[−π/2, π/2]2 will deter-

mine the smoothing properties of GFP and LFP methods. Thus, N
+
(ξ,θ) and

N
−
(ξ,θ) are defined by

N
+
(ξ,θ) = Σ(ξ)−D1(ξ) exp(−iθ1)−D2(ξ) exp(−iθ2)

and

N
−
(ξ,θ) = −D3(ξ)(exp(iθ1) + exp(iθ2)).

and the local smoothing factor is

µloc = sup{|ρ(S(ξ,θ))| : θ∈ Θhigh} (33)

where ρ indicates the spectral radius of

S(ξ,θ) = −[N+
(ξ,θ)]−1[N

−
(ξ,θ)]. (34)

Here we would say a FP-type smoother is effective if µloc ≪ 1.
We can analyze the smoothing factor for 1 ̸= ω ∈ (0, 2) in (21) and (25) by

the LFA in the similar way to the case ω = 1. Here

N
+
(ξ,θ) and N

−
(ξ,θ)

are given respectively by

N
+
(ξ,θ) = Σ(ξ)− ωD1(ξ) exp(−iθ1)− ωD2(ξ) exp(−iθ2) (35)

and

N
−
(ξ,θ) = (1− ω)Σ(ξ)− ωD3(ξ)(exp(iθ1) + exp(iθ2)). (36)

The effectiveness of the above two smoothers (i.e. GFP and LFP methods) is
now tested by computing their smoothing factors for the particular examples
as shown in Figure 1 (a) and (d). Table 1 summarizes the smoothing factors
by the GFP and LFP smoothers. Clearly, the LFP smoother is much better
than the GFP smoother.
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Smoothers Example 1 Example 2
GFP (ω,MAXSOR) = (1.5, 2) 0.7837 0.5824
LGP (ω,MAXFP ) = (1.6, 2) 0.8258 0.6052

Table 1. Smoothing factors µ̄loc by the GFP and LFP smoothers after 5 relaxation steps with h = 1/128
and β = 10−5 for Example 1 and Example 2 as shown in Figure 1 (a) and (d), respectively. Note
that both images were corrupted by the combination of Gaussian and Gamma noise by the parameter
(k0, k1) = (50, 0.25). Clearly, the GFP smoother performs much better than the LFP smoother.

5.2 A nonlinear multigrid algorithm

Full approximation scheme based nonlinear multigrid (FAS-NMG) method
has become an efficient approach for solving nonlinear problems, in particular
image processing applications. Here we have to solve the nonlinear PDE (14)
i.e.

−Kh
(
uh
)
i,j

+ α1(
(
uh
)
i,j
−
(
zh
)
i,j
) + α2(1−

(
zh
)
i,j

e−(uh)i,j ) =
(
gh
)
i,j

which is again denoted (for the purpose of applying MG) by

N h(uh) = gh

where the nonlinear partial differential operator N h is given by the left-hand
side of (14) and gh = 0 on the finest grid.
Let uh be the current approximation of uh after a few smoothing iterations

in a pre-smoothing step on a fine-grid problem where we denote by uh the
exact solution of (14). Then, the algebraic error eh of the solution is given by
eh = uh − uh. The residual equation system is given by

N h(uh + eh)−N h(uh) = gh −N h(uh) = rh.

In order to correct the approximated solution uh on the fine grid, one needs to
compute the error eh. However, the computation of eh is prohibitively expen-
sive and cannot be computed directly on the fine grid. Since high frequency
components of the error in the pre-smoothing step have already been removed
by the smoother, we can transfer the following nonlinear system to the coarse
grid as follows:

N h(uh + eh)︸ ︷︷ ︸
Nh(uh)

= rh +N h(uh)︸ ︷︷ ︸
gh

→
NH(uH + eH)︸ ︷︷ ︸

NH(uH)

= rH
l̂
+NH(uH)︸ ︷︷ ︸

gH

(37)
where H = 2h is the new cell size H × H and gH ̸= 0 on the coarse grid.
After the nonlinear residual equation on the coarse grid (37) has been solved
with a method of our choice, the coarse-grid correction eH = uH − uH is then
interpolated back to the fine grid eh that can now be used for updating the
approximated solution uh of the original system on the fine grid uhnew = uh+eh

(coarse-grid correction step). The last step for a FAS-NMG method is to
perform the smoother again to remove high frequency parts of the interpolated
error (post-smoothing step).
We now define our MG components as follows. The GFP or LFP method

represented in Section 4.3 is applied as the MG smoother. Standard coarsening
is used in computing the coarse-grid domain ΩH by doubling the grid size in
each space direction, i.e. h→ 2h = H. For intergrid transfer operators between
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Ωh and ΩH , the averaging and bi-linear interpolation techniques are used for
the restriction and interpolation operators denoted respectively by IHh and IhH ;
see the details in [9,34,51,58,59]. In order to compute the coarse-grid operator
of N h(uh) given by the left hand side of (14), a so-called discretization coarse
grid approximation (DCA) is performed [9, 51, 59]. The idea is to rediscretize
the Euler-Lagrange system directly.
Finally, the pseudo-code implementation of our FAS-NMG method can be

summarized in the following algorithm:

Algorithm 5.1 FAS-NMG Algorithm

Denote the FAS-NMG parameters as follows:
vh the restored image

zh the noisy image

gh the RHS (right-hand side) term of (14)

α1 the weighted parameter of the ROF fitting term in (9)

α2 the weighted parameter of the JY fitting term in (9)

ω relaxation parameter

MAXS the maximum number of iterations using by a smoother

ν1 pre-smoothing steps on each level

ν2 post-smoothing steps on each level

µ the number of MG cycles on each level (µ = 1 for V−cycling and µ = 2 for W−cycling)
[Here we present the V−cycle with µ = 1]

−→ε the tolerance

vh← FASNMG
(
vh, zh, gh, α1, α2, ω,MAXS , ν1, ν2, µ,

−→ε
)

• Select and initial guess solution ṽhinitial on the finest grid
• Set K = 0, (vh)[K] = ṽhinitial, ε̃2 = ε2 + 1, ε̃3 = ε3 + 1, and ε̃4 = ε4 + 1
• While (K < ε1 AND ε̃2 ≥ ε2 AND ε̃3 ≥ ε3 AND ε̃4 ≥ ε4)

I (vh)[K+1] ← FASCY C((vh)[K], zh, gh, α1, α2, ω,MAXS , ν1, ν2, µ)
I ε̃2 = ||gh −N h((vh)[K+1])||2/||gh −N h(ṽhinitial)||2
I ε̃3 = Jh((vh)[K+1])/Jh(ṽhinitial),

[Jh (·) denote the discrete version of (9)]
I ε̃4 = |Jh((vh)[K+1])− Jh((vh)[K])|
I K = K + 1

• end

where

[
vh
]
← FASCY C(vh, zh, gh, α1, α2, ω,MAXS , ν1, ν2, µ)
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• If Ωh = coarset grid (|Ωh| = 4× 4), solve (14) using (19)
and then stop. Else continue with the following steps.
• Pre-smoothing:

For k = 1 to ν1,
[
vh
]
← Smoother(vh, zh, gh, α1, α2, ω,MAXS)

• Restriction to the coarse grid:
vH ← IHh vh, zH ← IHh zh

• Set the initial solution for the coarse-grid problem:
ũH ← vH

• Compute the new right-hand side for the coarse-grid problem:
gH ← IHh (gh −N h(vh)) +NH

(
vH
)

• Implement the FAS-NMG method on the coarse-grid problem:
For k = 1 to µ,

[
vH
]
← FASCY C

(
vH , zH , gH , α1, α2, ω,MAXS , ν1, ν2, µ

)
• Add the coarse-grid corrections:

vh ← vh + IhH
(
vh − ũH

)
• Post-smoothing:

For k = 1 to ν2,
[
vh
]
← Smoother(vh, zh, gh, α1, α2, ω,MAXS)

For practical applications our FAS-NMG approach is stopped if the maxi-
mum number of V− or W−cycles ε1 is reached (usually ε1 = 10), the relative
residual obtained from the Euler-Lagrange equations (14) is smaller than a
small number ε2 > 0 (typically ε2 = 10−4), the relative reduction of J is
smaller than some ε3 > 0 (typically ε3 = 10−2), or the change in two consec-
utive steps of J is smaller than a small number ε4 > 0 (typically ε4 = 10−6).

6 Numerical Results

Original Noisy Restored
(a) (b) (c)

PSNR = 15.9009 PSNR = 28.7088
(d) (e) (f)

PSNR = 14.4985 PSNR = 28.3866

Figure 1. The set of two restoration problems with the image size 1024× 1024. Left to right: original,
noisy, and restored image. Top to bottom: Example 1 (a synthetic image) and Example 2 (a real-life

image). Clearly, our proposed model provides good quality of the restored images.

In this section, we present some numerical experiments to

(i) compare the modeling results of the proposed restoration method with the
recent state-of-the-art method introduced by Hirakawa and Parks [36]. We
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chose to focus on their work for three reasons: (a) their noise model is a
special case of (8) when η1 = η2 = η represents white Gaussian noise with
variance one; (b) it reports quantitative results; (c) numerical tests reported
in this previous work show that many existing methods compared with their
work are less efficient.

(ii) illustrate the robustness of our FAS-NMG method with regard to parameter
changes.

We note first that all numerical algorithms are implemented in MATLAB
2010a on 64-bit Fedora 14 and will be stopped when the relative residuals are
less than ε2 = 10−8 for convergence tests. Second, all the tests were carried
out on Dell Precision T7500 Workstation with Six-Core Intel Xeon Processor
and 24Gb of RAM.

6.1 Comparison with other image restoration methods in [36]

Image (k0, k1) PSNR PSNR
[36] (Proposed)

(10, 0) 33.44 35.56
(25, 0) 29.16 30.61

Boats (25, 0.1) 27.28 28.65
(25, 0.2) 25.94 26.84
(50, 0) 25.82 27.18
(10, 0) 33.73 34.13
(25, 0) 29.32 30.18

Peppers (25, 0.1) 27.47 28.39
(25, 0.2) 26.05 26.80
(50, 0) 25.82 26.67

Table 2. Restoration methods evaluated using PSNR. Images with the size 512 × 512 corrupted by the
combinations of zero-mean Gaussian noise generated by different values of (k0, k1). Recall that the third
and fourth columns show the PSNR results reported in [36] and obtained from the proposed restoration
method, respectively.

In table 2 we list the details of ten experimental setups considered: the
images; the noise levels determined by the different values of (k0, k1); the
PSNR results reported in [36]; the PSNR values obtained from the proposed
restoration method. As shown in the third and fourth columns of Table 2, the
proposed restoration method performs a clear improvement over the existing
method in [36] when images corrupted by an increased level of noise. We note
that many existing methods cited and compared in [36] are less efficient than
the recent state-of-the-art method proposed .

6.2 Tests of the proposed FAS-NMG algorithm

In Section 5 we have used the LFA to inform our theoretical choice of suitable
smoother for our new FAS-NMG Algorithm 5.1. Here by experiments, we
hope to first verify the reliability of this choice and then to further test the
convergence issues of it with regard to parameters h, α∗ = α1/α2, β, and
(k0, k1). In all tests, η was selected to be white Gaussian noise with variance
one, while ζ was adopted to be Gamma noise of mean one.

6.2.1 Comparison of GFP and LFP smoothers and h−independent con-

vergence tests. As is well known, one of the key properties of MG techniques
is that their convergence does not depend on the number of grid points. Thus,
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in this test we designed our experiments not only to investigate this property
with Algorithm 4.1 (GFP smoother) and Algorithm 4.2 (LFP smoother), but
also to backup our theoretical results by LFA in Section 5. The number of MG
steps (V-cycles), denoted by “M”, used to drop the relative residual below
ε2 = 10−8, the PSNR values, and the WUs are given in Table 3 with different
sizes of grid points. Recall that ν1, ν2, ω, MAXFP , MAXSOR, PSNR, and
WUs denote the number of presmoothing and postsmoothing, the relaxation
parameter, the maximum iteration of FP and SOR methods, the peak signal-
to-noise ratio, and the work units, respectively. Note that WU is used to get
a measure of speed without using the machine-dependent CPUs. We define
a WU used in measuring computational work as the work of performing a
smoother or relaxation step on the finest grid. For the GFP smoother, it is
defined by

1 WU = (37 + 21(MAXSOR))N

where N = n2 be the number of grid points, the number 37 is estimated
from discretizating and computing all nonlinear coefficients and the number
21 comes from updating for each grid point by the SOR method. Similarly, a
WU of the LFP smoother is given by

1 WU = 58MAXFPN

where the number 58 is the cost of discretizating and computing all nonlinear
coefficients and updating for each grid point by the SOR method. Therefore,
the total cost of one V-cycle used L coarse grids and the GFP smoother can
be estimated as follows:

V-cycle cost = (ν1 + ν2)(X0 +X1(MAXSOR))N

L∑
k=0

(1/4)k

<
4

3
(ν1 + ν2) WUs.

Here the V-cycle cost used the LFP smoother can be computed in a similar
manner. Note that we have ignored the cost of interpolation and restriction
procedures as well as the cost of residual correction procedure because they
are relatively small compared with smoothing procedures.
As expected from the LFA results in Section 5, the numerical results shown

in Table 3 clearly confirm that the LFP smoother is better than the GFP
smoother in terms of convergence. However it is slightly more expensive than
the GFP smoother.

6.2.2 α∗−dependent tests. Next we evaluate how our MG algorithm it
affected with varying α∗ = α1/α2. To end this, the MG algorithm based on the
LFP smoother was tested on Example 2 (see Figure X(b)) with results shown
in Table 4. Here the following parameters are used: β = 10−5, h = 1/1024,
ν1 = ν2 = 5, ω = 1.5, MAXFP = 2, (k0, k1) = (50, 0.25) for all experiments
and α∗ is varied from 2 to 5000. For this test, large or small α∗ is not needed
as moderate ones give better results, typically α∗ = 50, 100, 1000. However,
the process to select the optimal value of α∗ is a separate but important issue
because it is in general unknown a priori and it significantly affects on the
qualities of recovered images as well as the MG performance.
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MG with the GFP Smoother (Algorithm 4.1) MG with the LFP Smoother (Algorithm 4.2)
ν1/ν2/ω/MAXSOR/M/PSNR/WUs ν1/ν2/ω/MAXFP /M/PSNR/WUs

Example 1 (Ring) α1 = 4, α2 = 1/8, β = 10−5

h = 1/512 5/5/1.5/2/16/27.92/213.3301 5/5/1.60/2/10/27.78/133.3313
h = 1/1024 5/5/1.5/2/15/28.66/199.9992 5/5/1.60/2/10/28.70/133.3328
h = 1/2048 5/5/1.5/2/14/29.21/186.6665 5/5/1.60/2/10/29.14/133.3332
h = 1/4096 5/5/1.5/2/14/29.46/186.6666 5/5/1.60/2/10/29.41/133.3333

Example 2 (Pepper) α1 = 5, α2 = 1/10, β = 10−5

h = 1/512 5/5/1.5/2/18/25.60/239.9963 5/5/1.60/2/12/25.74/159.9976
h = 1/1024 5/5/1.5/2/17/28.57/226.6658 5/5/1.60/2/11/28.38/146.661
h = 1/2048 5/5/1.5/2/16/30.87/213.3331 5/5/1.60/2/10/30.64/133.3332
h = 1/4096 5/5/1.5/2/16/32.85/213.3333 5/5/1.60/2/10/32.81/133.3333

Table 3. Results of Algorithm 5.1 with the proposed smoothers for processing Examples 1 − 2 shown
respectively in Figure 1 (a) and (d). The symbols ‘M’, ‘PSNR’, and ‘WUs’ mean the number of MG cycles,
the peak signal-to-noise ratio, the work units, respectively. Recall that ν1, ν2, ω, MAXSOR, MAXFP
denote, respectively, the number of pre-smoothing and post-smoothing, the relaxation parameter, the
maximum iteration of the SOR and FP methods. Obviously, the LFP smoother is better than the GFP
smoother in terms of convergence. However it is slightly more expensive than the GFP smoother; 1 WU
of LFP smoother = 1.49(1 WU of GFP smoother).

α1/α2 1/(1/2) 1/(1/10) 5/(1/10) 5/(5/100) 10/(1/100) 50/(1/50) 50/(1/100)
α∗ 2 10 50 100 1000 2500 5000
M 17 13 12 11 10 4 4

PSNR 5.10 16.94 27.63 28.42 28.86 17.36 13.12

Table 4. Results for α∗−dependent tests of Algorithm 5.1 with the LFP smoother for Example 2 shown
in Figure 1 (d). Recall that the symbols ‘M’ and ‘PSNR’ mean the number of MG cycles and the peak
signal-to-noise ratio, respectively. Clearly, the moderate ratios between α1 and α2, i.e. α

∗ = 50, 100, 1000,
are recommended.

6.2.3 β−dependent tests. As is well known, the qualities of restoration
results and the performance of the MG techniques in solving the nonlinear
systems related to the TV regularization method are affected significantly by
the values of β. Here our aim for this test is to see how the proposed variational
model and FAS-NMG algorithm are affected with varying the values of β.
To see this, the MG algorithm based on the LFP smoother was tested on

Example 2 using the following parameters h = 1/1024, α1 = 5, α2 = 1/10,
(k0, k1) = (50, 0.25), ν1 = ν2 = 5, ω = 1.6, and MAXFP = 2 for all experi-
ments and β is varied from 10−5 to 1.
As can be seen, Table 5 shows that our MG algorithm converges within a few

steps. Theoretically β should be selected to be as small as possible. However
our experimental results indicate that vary small β is not necessary and not
recommendable. As clearly shown in Table 5, β = 10−4 or β = 10−5 is enough
to remove this kind of noise with the good PSNR results in a few MG steps.

β 1 10−1 10−2 10−3 10−4 10−5

M 6 6 7 7 7 11
PSNR 18.55 22.21 25.81 27.62 27.86 27.86

Table 5. Results for β−dependent tests of Algorithm 5.1 with the LFP smoother for Example 2 shown
in Figure 1 (d). Recall that the symbols ‘M’ and ‘PSNR’ mean the number of MG cycles and the peak
signal-to-noise ratio, respectively. Clearly, β = 10−4 or β = 10−5 is enough to remove this kind of noise
with the good PSNR results in a few MG steps.
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6.2.4 Signal−dependent tests. Table 6 shows the robustness of our restora-
tion method and the proposed MG algorithm for different noise levels. Here
we tested with the LFP smoother using the parameters h = 1/1024, α1 = 8,
α2 = 0.02, β = 10−5, ν1 = ν2 = 5, ω = 1.6, and MAXFP = 2 for all tests.
As can be clearly seen, although convergence is slower for noisier images, the
PSNR values show that the restored images would come with good quality.
Moreover, the number of MG steps does not increase very much.

(k0, k1) (25, 0.1) (25, 0.2) (50, 0.1) (50, 0.2)
M 8 9 10 11

PSNR 33.02 32.43 29.47 29.39

Table 6. Results for signal−dependent tests of Algorithm 5.1 with the LFP smoother for Example 2 shown
in Figure 1 (d). Recall that the symbols ‘M’ and ‘PSNR’ mean the number of MG cycles and the peak
signal-to-noise ratio, respectively.

7 Conclusion

In this work we have presented a novel variational model and one-step algo-
rithm for the restoration of images corrupted at one time by independent AN
and MN. We have also discussed the existence and uniqueness of the solution
for the new model and proposed a very fast and reliable NMG algorithm. Nu-
merical tests confirmed that the new model is able to restore better degraded
images than former models and very importantly its numerical realization is
very fast making the combination of our algorithm and model suitable to pro-
cess high-resolution images.
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