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Fast Multilevel Algorithm for a Minimization
Problem in Impulse Noise Removal

Raymond H. Chan∗and Ke Chen†

Abstract

An effective 2-phase method for removing impulse noise was recently proposed. Its phase 1 identifies noisy
pixel candidates by using median-type filters. Then in phase 2, it restores only the noisy pixel candidates
by some variational methods. The resulting method can handle salt-and-pepper noise and random-valued
impulse noise of noise level as high as 90% and 60% respectively. The aim of this paper is to generalize a
fast multilevel method for Gaussian denoising to solving the minimization problem arising in phase 2 of
the 2-phase method. The multilevel algorithm gives better images than standard optimization method
such as the Newton method or conjugate gradient method. Also it can handle more general regularization
functionals than the smooth ones previously considered. Supporting numerical experiments on 2D gray
scale images are presented.

68U10, 65F10, 65K10.
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1 Introduction

Image denoising is one of the basic problems in image processing [1, 9, 19, 20]: given an observed
image z ∈ Rn×n, restore a ‘quality’ image u ∈ Rn×n such that z = u+η with η being some noise
matrix. Here by ‘quality’, we mean that the problem of finding u from z is a typical inverse
problem which does not have a unique solution without regularization. How to model η properly
depends on the context in which the given image z is gathered. For images contaminated by
environments or a transmission process, all pixels contain noise but the whole image is still
vaguely ‘visible’ to the human eye. Then the Gaussian noise model for η is commonly used
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[19, 20]; we assume that η is sampled from a Gaussian distribution with zero mean and some
variance which may be estimated from z. For other noisy images generated by imperfect imaging
equipment e.g. malfunctioning sensors and faulty memory, the impulse noise model for z appears
to be more appropriate [10, 14]. Here although the underlying image may not be visible to human
eyes, the belief is that some pixels do contain the true values and the others contain completely
incorrect values, with both locations being unknown.

Recently an effective 2-phase method for removing impulse noise was proposed [4, 6]. In phase
1, it tries to identify noisy pixel candidates by using some median-type filters; see [10, 14, 15, 18]
and the references therein. Then in phase 2, it restores only the noisy pixel candidates by
variational methods. It is similar to doing an inpainting on the noisy pixel candidates. By using
the functional proposed in [14], the resulting method can handle salt-and-pepper noise and
random-valued impulse noise of noise level as high as 90% and 60% respectively, see [4, 6, 12].
The main difficulty in this 2-phase method is in solving the optimization problem that arises in
the second phase. The minimization functional consists of an `1 data fitting term and either a
smooth or non-smooth regularization term, see [14, 6, 4].

In [5, 1], we have shown that in phase 2, there is no need to consider the data fitting term
as the data are fitted exactly for non-noisy candidates. It remains only to minimize the smooth
or non-smooth regularization functional over the noisy candidate set obtained from phase 1.
In this paper, we will develop a multilevel acceleration method for this optimization problem
which is based on the method in [7] for Gaussian noise, and is more robust and reliable even for
non-smooth regularization functional such as the total-variation norm model [19].

We will use the following notations. Let A denote the index set of all pixels i.e. A =
{(i, j) | i = 1, . . . , n; j = 1, . . . , n} and N denote the index set of pixels that are found noisy by
a filtering method in phase 1. The remaining pixels are denoted by N c = A\N , and we will
call them simply as correct pixels. For any noisy candidate pixel (i, j) ∈ N , denote by Vi,j the
set of its neighbors (not including itself). Then the splitting Vi,j = (Vi,j ∩ N )

⋃
(Vi,j ∩ N c) will

separate correct pixels from the noisy candidates.
In the second phase of the 2-phase method, we shall restore the pixels in N by solving the

following minimization problem [5, 1]:

min
ui,j∈R,(i,j)∈N

F (u), (1)

F (u) =
∑

(i,j)∈N

( ∑

(m,r)∈Vi,j∩N c

2φ(ui,j − zm,r) +
∑

(m,r)∈Vi,j∩N
φ(ui,j − um,r)

)
,

where φ is an even edge-preserving potential function. We emphasize that since data-fitting
is done exactly on N c, there is only the regularization term in formulation (1) and hence no
regularization parameter is needed here. Examples of the above φ are:

φ(t) = |t| (2)
φ(t) =

√
t2 + β, β > 0, (3)

φ(t) = |t|γ , 1 < γ ≤ 2. (4)

Here when (2) is used, one normally approximates it by (3) with a small β as a regularized
version — consequently one has to address the sensitivity of numerical techniques with respect
to the choice of β.

For smooth φ(t), e.g. (3) and (4) above, one can solve (1) by some standard optimization
methods. In fact, Newton’s method with continuation and conjugate gradient method were tried
in [5] and [1] respectively. Readers familiar with the Gaussian noise removal [19] can connect
(2) to the variational semi-norm [16]

‖u‖∗ =
∫

Ω
(|ux|+ |uy|)
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where Ω = [0, 1]2 is the continuous image domain. This norm is non-rotationally-invariant,
but one may immediately relate it to the well-known rotationally-invariant total variation (TV)
semi-norm [19, 9, 20]:

‖u‖TV =
∫

Ω

√
u2

x + u2
y.

Using the TV semi-norm, we can suggest a similar restoration model to (1):

min
ui,j∈R,(i,j)∈N

FTV (u), FTV (u) =
∑

(i,j)∈N

√
(ui,j − ui+1,j)2 + (ui,j − ui,j+1)2, (5)

where we take as zero those differences involving ui,n+1, un+1,j for all i, j. Here um,r = zm,r for
all (m, r) ∈ N c as these indices correspond to the correct pixels.

Our task here is to accelerate the solution procedure of variational models in phase 2. That
is, we shall discuss how to solve the minimization problems (1) and (5). For smooth φ(t), one
can solve the Euler-Lagrange equation of (1) as we did in [5, 1]. Standard multigrid [2, 11]
is difficult to use on the equation since we are solving it on the irregular grid points N and
coarsening will be a problem. The method that we are going to use is a multilevel method
that solve the minimization problems (1) and (5) directly and has been shown to work well for
Gaussian noise removal [7]. Since minimization is not done for the whole index set A, but on
N , special modification is needed. Problem (1) with the choice (3) will be considered as the
main task while discussions on problem (1) with (2) and problem (5), although not done before
because of the non-smoothness of the regularization functionals, will be supplementary as the
multilevel adaption is the same.

The plan is to review our recently proposed multilevel method for the Gaussian noise removal
[7] in Section 2. Section 3 presents details of implementation of a multilevel method for model
(1). Numerical experiments are reported in Section 4, where we shall use the new method first as
a combined method with the Newton continuation method [5] and then as a standalone method.
The merits with using (5) are also considered and highlighted.

2 Review of a multilevel method for optimization

We now briefly review the multilevel method proposed in [7] for removing Gaussian noise. One
nice advantage about the method is that it can be applied to non-smooth functionals as it does
not require their derivatives. Given z ∈ Rn×n as before, we illustrate the method in solving
standard TV model [19]:

min
u

J(u), J(u) =
∫

Ω

(
α
√

u2
x + u2

y +
1
2
(u− z)2

)
,

which is discretized to give rise to the optimization problem

min
u∈Rn×n

J(u), J(u) = α
n−1∑

i=1

n−1∑

j=1

√
(ui,j − ui,j+1)2 + (ui,j − ui+1,j)2 +

1
2

n∑

i=1

n∑

j=1

(ui,j − zi,j)2, (6)

with α = α/h and h = 1/(n − 1). For simplicity, we shall assume n = 2L. Let the standard
coarsening be used giving rise to L + 1 levels k = 1 (finest), 2, . . ., L, L + 1 (coarsest). Denote
the dimension of level k by τk × τk with τk = n/2k−1.
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As a prelude to multilevel methods, consider the minimization of (6) by the coordinate
descent method on the finest level 1:





Given u(0) = (u(0)
i,j ) = (zi,j) with l = 0,

Solve u
(l)
i,j = argminui,j∈RJ loc(ui,j) for i, j = 1, 2, . . . , n

Set u(l+1) = (u(l)
i,j) and repeat the above step with l = l + 1

until a prescribed stopping step on l,

(7)

where

J loc(ui,j) = α
[√

(ui,j − u
(l)
i+1,j)2 + (ui,j − u

(l)
i,j+1)2

+
√

(ui,j − u
(l)
i−1,j)2 + (u(l)

i−1,j − u
(l)
i−1,j+1)2

+
√

(ui,j − u
(l)
i,j−1)2 + (u(l)

i,j−1 − u
(l)
i+1,j−1)2

]
+

1
2
(ui,j − zi,j)2.

(8)

Due to Neumann’s condition for the continuous variable u, all difference terms involving indices
in subscripts larger than n are set to zero. Note that each subproblem in (7) is only one
dimensional.

To introduce the multilevel algorithm, we rewrite (7) in an equivalent form:





Given u(0) = (u(0)
i,j ) = (zi,j) with l = 0,

Solve ĉ = argminc∈RJ loc(u(l)
i,j + c), set u

(l)
i,j = u

(l)
i,j + ĉ

Set u(l+1) = (u(l)
i,j) and repeat the above step with l = l + 1

until a prescribed stopping step on l,

(9)

where i, j = 1, 2, . . . , n. Here each subproblem can be interpreted as finding the best correction
constant ĉ at the current approximate u

(l)
i,j on level 1. Likewise one may consider a 2× 2 block

of pixels with pixel values denoted by the current approximate ũ. Our multilevel method for
k = 2 is to look for the best correction constant to update this block so that the underlying merit
functional (relating to all four pixels) achieves a local minimum. One sees that this idea operates
on level 2. If we repeat the idea with larger blocks, we arrive at levels 3, 4 with respective 4× 4
and 8× 8 blocks.

If we write down the above idea in formulae, it may appear complicated but the idea is
simple. On level k, set b = 2k−1, k1 = (i− 1)b+1, k2 = ib, `1 = (j− 1)b+1, `2 = jb. Then the
(i, j)th computational block (stencil) involving the single constant ci,j on level k can be depicted
in terms of pixels of level 1 as follows

...
... · · · ...

...
ũk1−1,`2+1 + ci−1,j+1 ũk1,`2+1 + ci,j+1 · · · ũk2,`2+1 + ci,j+1 ũk2+1,`2+1 + ci+1,j+1

ũk1−1,`2 + ci−1,j ũk1,`2 + ci,j · · · ũk2,`2 + ci,j ũk2+1,`2 + ci+1,j

· · · ... · · · ... · · ·
ũk1−1,`1 + ci−1,j ũk1,`1 + ci,j · · · ũk2,`1 + ci,j ũk2+1,`1 + ci+1,j

ũk1−1,`1−1 + ci−1,j−1 ũk1,`1−1 + ci,j−1 · · · ũk2,`1−1 + ci,j−1 ũk2+1,`1−1 + ci+1,j−1
...

... · · · ...
...

(10)

Clearly there is only one unknown constant ci,j and we shall obtain a one-dimensional sub-
problem. After some algebraic manipulation [7, 8], we find that the local minimization problem
minci,j J(ũ + Pkci,j) (with Pk an interpolation operator distributing ci,j to a b× b block on level
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k as illustrated above) is equivalent to problem minci,j G(ci,j), where

G(ci,j) = α

`2∑

`=`1

√
(ci,j − hk1−1,`)2 + v2

k1−1,` + α

k2−1∑

m=k1

√
(ci,j − vm,`2)2 + h2

m,`2
+

α

`2−1∑

`=`1

√
(ci,j − hk2,`)2 + v2

k2,` + α

k2∑

m=k1

√
(ci,j − vm,`1−1)2 + v2

m,`1−1 +

α
√

2
√

(ci,j − vk2,`2)2 + h
2
k2,`2 +

b2

2
(ci,j − w̃i,j)2, (11)

and 



z̃m,` = zm,` − ũm,`, w̃i,j = mean
(
z̃(k1 : k2, `1 : `2)

)
=

k2∑

m=k1

`2∑

`=`1

z̃(m, `)
b2

,

ṽm,` = ũm,`+1 − ũk,`, vk2,`2 =
vk2,`2 + hk2,`2

2
,

h̃m,` = ũm+1,` − ũm,`, hk2,`2 =
vk2,`2 − hk2,`2

2
.

(12)

The solution of the above 1D minimization problem defines the updated solution of u = ũ+Pkci,j .
Then we obtain a multilevel method if we cycle through all levels and all blocks on each level.

Two remarks are due here. Firstly would the derived multilevel algorithm converge? The
answer is no, if the functional J is non-smooth. However, in [7], we found that the wrongly
converged solution is only incorrect near flat patches of the solution. The idea of detecting such
flat patches during iteration and incorporating new local minimizations based on the patches
was suggested in [7]. Essentially we implement a new coarse level. Secondly, how would one solve
the one-dimensional minimization problem? Our experience suggests either a fixed-point based
Richardson iteration or the Newton method. On the coarsest level, the TV term is unchanged
by adding c so the problem has an exact solution. To avoid the gradient becoming zero on other
levels, we need a regularizing parameter δ [7] which does not influence the final convergence
as long as it is small (e.g. 10−20). Here the solution of each local minimization problem is
only needed to be approximate as with smoothing steps of a multigrid method for an operator
equation. One might question the advantage of solving (6) this way or ask: why cannot one solve
a regularized version of (6) at the very beginning? The reason is that with small but nonzero δ
the local patches (of the true solution) are smoothed out and are less easy to be detected in order
to speed up the convergence by a specially designed coarse level. Consequently if implementing
such an approach, one would observe sensitivity of the method when δ changes.

Overall the revised multilevel method [7] for solving (6) is the following:

Algorithm 1: Given z and an initial guess ũ = z, with L + 1 levels,

1. Iteration starts with uold = ũ (ũ contains the initial guess before the first iteration and
the updated solution at all later iterations).

2. Smooth for ν iterations the approximation on the finest level 1, i.e. solve (7) for i, j =
1, 2, . . . , n.

3. Iterate for ν times on each coarse level k = 2, 3, . . . , L + 1:

• compute z̃ = z − ũ, w̃i,j , ṽm,`, and h̃m,` via (12),

• compute the minimizer c of (11) if k ≤ L; or on the coarsest level k = L + 1, the
correction constant is simply c = mean(w̃) = mean(z − ũ),

• add the correction, ũ = ũ + Pkc, where Pk is the interpolation operator distributing
ci,j to the corresponding b× b block on level k as illustrated in (10).
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4. On level k = 1, check the possible patch size for each position (i, j):

patch = {(i`, j`) : |ui`,j`
− ui,j | < ε}

for some small ε. Implement the piecewise constant update as with Step 3.

5. If ‖ũ−uold‖2 is small enough, exit with u = ũ or return to Step 1 and continue iterations.

We note that whenever the TV semi-norm is used (resulting in a non-smooth J), the solution
will allow local constants. Such local constants lead to the hemi-variateness of the solution, which
may prevent local minimizations reaching the global minimizer [17]. Step 4 here is to overcome
this, see [8]. Finally we remark that the above method can also be adapted for solving the
Poisson denoising model [3].

3 A modified multilevel method for the 2-phase approach

The main difference between our new problem (1) and problem (6) is that in (1) we only do the
minimization in a subset N , and we do not update any pixels in N c. Therefore we have to adapt
the above multilevel method accordingly. Figure 1 shows a typical example of noisy pixels in N
(denoted by ×) mixed with correct pixels in N c (denoted by •). Clearly some subproblems are
empty if all pixels within are the correct pixels. This will be the main characteristic of our new
multilevel method.

Fig. 1: Illustration of subproblems for a piecewise constant multigrid method for impulse de-
noising.

Level 1 Level 2

Level 3 Level 4 etc



, 7

Fig. 2: Illustration of interacting pixels in block (2, 2) in Figure 1 (level 3).

First of all, we show how to use the coordinate descent method on the finest level 1




Given u(0) = (u(0)
i,j ) = (zi,j) with l = 0,

Solve ĉ = argminc∈RF loc(u(l)
i,j + c), u

(l)
i,j = u

(l)
i,j + ĉ for (i, j) ∈ N

Set u(l+1) = (u(l)
i,j) and repeat the above step with l = l + 1

until a prescribed stopping step on l,

(13)

which modifies the method (9) for the related Gaussian denoising case, where minimization is
carried out for all pixels. Here the local merit functional is defined as

F loc(ui,j) =
∑

(m,r)∈Vi,j∩N c

2φ(ui,j − zm,r) +
∑

(m,r)∈Vi,j∩N
φ(ui,j − um,r),

which is already in discrete form for φ(t) defined in (2)–(4). For TV-norm, it is defined as J loc

in (8), but we only do the minimization for (i, j) ∈ N . The discretization and minimization will
proceed as with J loc before, with the only modification of not involving terms which are not
linked to noisy pixels.

Next we consider how to formulate the coordinate descent method on level k > 1 (as in
Figure 1). To introduce the main idea and formulation, we need to generalize the previous
notation Vi,j from a single pixel to a block of pixels. Denote by D(i, j) the index set of all
pixels of block (i, j) on level k (k ≥ 1) and VD(i,j) the set of neighbouring pixels of D(i, j).
Let D(i, j) = B(i, j)

⋃
I(i, j) be a non-overlapping splitting, separating the boundary pixels

B(i, j) and the interior pixels I(i, j) of block (i, j). Therefore on levels k = 1, 2, I(i, j) is empty
and D(i, j) = B(i, j) for all (i, j). On level 1, clearly, D(i, j) = {(i, j)} so Vi,j = VD(i,j) in
this case. For an example on level 3, consider block (i, j) = (2, 2) as depicted in Figure 1:
D(2, 2), B(2, 2), I(2, 2) contain 16, 12, 4 respective members and VD(2,2) contains 20 members
(neighbors).

To simplify the block minimization problem minci,j∈R F (ũ + Pkci,j) for block (i, j) on level
k, we point out these characteristics:

1. only noisy pixels D(i, j) ∩N require taking into consideration in the minimization.

2. all noisy pixels in B(i, j) ∩N enter the minimization formula.
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3. the noisy pixels in I(i, j)∩N enter the minimization formula only if one of their neighbors
is a correct pixel.

In Figure 2, we illustrate the above observations using the example of block (2, 2) from Figure
1. There are only 8 noisy pixels (in D(2, 2) ∩ N denoted by ⊗) within this block of 16 pixels
and in particular all 5 members in B(2, 2)∩N will enter in the minimization formula while only
2 members (out of the total 3) in I(2, 2) ∩ N will enter in the minimization formula. This is
because any two neighbouring interior pixels have the same difference in gray values before and
after adding a constant, see the (3,3)th member in this block.

We are ready to state a simple and computable form of the block minimization problem
minci,j∈R F (ũ + Pkci,j) for block (i, j). This problem is equivalent to minimizing the following

Gloc(ci,j) =
∑

(i1,j1)∈I(i,j)∩N

∑

(m,r)∈Vi1,j1
∩N c

2φ(ũi,j + ci,j − zm,r) +

∑

(i1,j1)∈B(i,j)∩N


 ∑

(m,r)∈Vi1,j1
∩N c

2φ(ũi,j + ci,j − zm,r) +

∑

(m,r)∈Vi1,j1
∩N∩VD(i,j)

φ(ũi,j + ci,j − ũm,r)




=
∑

(i1,j1)∈D(i,j)∩N

∑

(m,r)∈Vi1,j1
∩N c

2φ(ũi,j + ci,j − zm,r) +

∑

(i1,j1)∈B(i,j)∩N

∑

(m,r)∈Vi1,j1
∩N∩VD(i,j)

φ(ũi,j + ci,j − ũm,r)

=
∑

(i1,j1)∈D(i,j)∩N

∑

(m,r)∈Vi1,j1
∩N c

2φ(ci,j − z̃m,r) +

∑

(i1,j1)∈B(i,j)∩N

∑

(m,r)∈Vi1,j1
∩N∩VD(i,j)

φ(ci,j − z̃m,r) (14)

where z̃m,r = zm,r − ũi,j for (m, r) ∈ N c and z̃m,r = ũm,r − ũi,j for (m, r) ∈ N . Here (14) is
a one-dimensional minimization problem for ci,j that may be solved by any available solver (as
remarked in the previous section). Once solved, we add the constant correction: ũ = ũ + Pkci,j .

As in the Gaussian noise case, whenever the TV semi-norm is used, the solution will allow
local constants, which may prevent local minimizations reaching the global minimizer [8, 17].
Following [8] (see Step 4 of Algorithm 1), we detect if such ‘patch’ exists:

H = ‘patch’ =
{

(i`, j`)
∣∣∣ |ũi`,j`

− ũi,j | < ε and (i, j), (i`, j`) ∈ N
}

. (15)

for small ε (e.g. 10−3). If this happens, the coordinate descent method can get stuck. Our
solution is to let each patch of such pixels form a local block minimization problem. Assume the
above patch H is embedded in some rectangular block D(i, j) of pixel indices. The local block
minimization problem is to find the best constant ci,j to be added to all the noisy candidates in
D(i, j) so that the overall merit functional is minimized. This will proceed exactly as in (14).

Our overall algorithm will proceed as follows:

Algorithm 2: Given the observed image z, an initial guess ũ, and the noisy candidate set N .

1. Iteration starts with uold = ũ.
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2. Smooth for ν iterations the approximation on the finest level 1, i.e. solve (13) for i, j =
1, 2, . . . , n.

3. Iterate for ν iterations on each coarse level k = 2, 3, . . . , L + 1:
— compute z̃ = z − ũ
— compute the minimizer c of (14)
— add the correction, ũ = ũ + Pkc.

4. On level k = 1, find each patch H via (15), and implement the piecewise constant update
as with Step 3.

5. If ‖ũ−uold‖2 is small enough, exit with u = ũ or return to Step 1 and continue iterations.

In our experiments, we take ν = 2.
To estimate the complexity of Algorithm 2, we need to estimate the number of terms in (14).

For the given image z ∈ Rn×n, let the predicted noise level be 100w% from phase 1; e.g. w = 0.5
for 50% noise. Firstly the cardinality of N is approximately wN with N = n2 for an n×n image.
Consequently the cardinality of N c is (1−w)N . Secondly on level k, the number of operations
associated all interior pixels Vi1,j1 ∩ N c will be 2wN while the number of terms associated all
boundary pixels Vi1,j1 ∩N ∩ VD(i,j) will be 4N

b2
(1− w)b = 4(1− w)N/2k−1. Therefore similarly

to [8] we can estimate the complexity of one cycle of Algorithm 2 as follows

sw

L+1∑

k=1

(
2wN + 4(1− w)N/2k−1

)
≈ 2sN(L + 1)w2 + 8Nsw(1− w) ≈ N log(N),

which is close to the optimal O(N) expected from a multilevel method. Here s is the total
number of local relaxation for solving each local minimization per cycle (i.e. the total number
from all ν iterations per cycle).

4 Numerical experiments

Here we shall demonstrate the usefulness of the proposed multilevel method (Algorithm 2).
Restoration performance is quantitatively measured by the peak signal-to-noise ratio (PSNR)

PSNR = PSNR(r, u) = 10 log10

2552

1
mn

∑
i,j(ri,j − ui,j)2

where ri,j and ui,j denote the pixel values of the original image and the restored image respec-
tively, with r, u ∈ Rm×n. Here we assume zi,j , ri,j , ui,j ∈ [0, 255].

We will consider salt-and-pepper noise here and the noisy candidate set N is detected by
the adaptive median filter (AMF), see [4, 13]. We note that AMF uses median values to restore
pixels in N to obtain the restored image on A. But for the 2-phase method, AMF is used just
to obtain N , and pixels in N are then restored by minimizing (1) in phase 2. We will consider
three different ways of restoration here:

• MG — our Algorithm 2 with the initial image u on A given by AMF.

• NT — the Newton continuation method [5] with the initial image u on A given by AMF.

• MG/NT — Algorithm 2 with initial image u on A given by the solution obtained by NT.
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Tab. 1: Comparison of restoration quality of uMG/NT = u with uNT (P: Problem, δ: improve-
ment)
P Noise PSNR(r, z) PSNR(r, uAMF ) PSNR(r, uNT ) PSNR(r,u) δ

1 50% 8.51 32.41 38.95 39.49 0.53
70% 7.05 28.17 33.66 35.09 1.42
95% 5.73 19.66 23.32 25.70 2.38

2 50% 8.37 28.92 32.77 32.95 0.18
70% 6.90 26.05 29.78 30.13 0.35
95% 5.58 19.66 23.51 25.10 1.58

3 50% 7.79 27.86 31.27 31.15 −0.11
70% 6.32 25.29 29.02 29.09 0.07
95% 5.01 18.87 23.61 25.01 1.41

4 50% 8.47 33.76 40.65 40.79 0.13
70% 7.02 29.55 35.41 36.76 1.35
95% 5.69 19.97 24.21 27.24 3.03

We have three sets of experiments. In set 1, we compare the performance of MG/NT with NT
for φ(t) =

√
t2 + 102 as used in [1]. In set 2, we compare the performance of MG with NT for

the same φ. Finally in set 3, we consider the performance of MG with φ(t) = |t| and with the
TV model (5). Since these functionals are non-smooth, such cases cannot be handled by NT [5]
or conjugate gradient methods [1], unless we regularize the functional. It turns out that models
(2) and (5) may produce better restored images than the popular choice (3) in cases of high
noise level.

Set 1 — comparison of MG/NT with NT. We have taken 4 test images of size 512×512
and experimented with various levels of salt-and-pepper type noise. We summarise the results
in Table 1, where one can observe that the improvement by MG/NT over NT alone is more for
higher noise levels. The comparative results for the noise level of 70% are shown in Figures 3
and 4. We note that the improvement can be bigger for smaller size images; we show in Figure 5
a test example with 64× 64 resolution and 95% noise for an image taken from Problem 4 where
the improvement in PSNR is about 6dB.

Set 2 — comparison of MG with NT. The previous tests show that our MG works best
if it uses the result from NT as an initial guess. Here, we test how MG performs without such
good initial guesses. We display the results in Table 2 where one can see that improvements are
still observed in most cases, especially when the noise level is high. Clearly in most test cases,
MG/NT gives the best restoration result.

In separate experiments, we have compared the speed of our MG with NT as 2 different
solvers. It turns out that the CPU times are comparable for images up to the size of 512× 512.
However for larger images with n ≥ 1024, NT cannot be run on the same Pentium PC with
2GB memory (due to excessive memory requirement) while MG can be run showing the same
quality restoration after 2− 3 cycles.

Set 3 — behaviour of MG/NT with non-smooth regularization functionals. We
now discuss how Algorithm 2 performs with models (2) and (5). We note that local minimization
using model (2) leads to problems of the type

min
c∈R

G(c), G(c) =
p∑

j=1

|c− cj |

for some integer p, which has the exact solution c = cmin = median([c1, . . . , cp]). Our experiments
show that MG/NT is still quite useful for high noise cases, as seen from Figure 6 for images
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Fig. 3: Comparison of MG/NT with NT with 70% salt-and-pepper noise (problems 1 and 2).
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Fig. 4: Comparison of MG/NT with NT with 70% salt-and-pepper noise (problems 3 and 4).
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Fig. 5: Comparison of MG/NT with NT with 95% for a small image.
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Tab. 2: Comparison of restoration quality of MG with NT (δ: improvement)
Problem Noise PSNR(r, uNT ) PSNR(r, uMG) δ

1 50% 38.95 39.17 0.22
70% 33.66 35.06 1.40
95% 23.32 25.37 2.05

2 50% 32.77 32.42 −0.36
70% 29.78 30.06 0.28
95% 23.51 24.78 1.27

3 50% 31.27 30.63 −0.63
70% 29.02 29.03 0.01
95% 23.61 24.72 1.12

4 50% 40.65 40.53 −0.12
70% 35.41 36.73 1.32
95% 24.21 26.80 2.59
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with 95% noise, where we compare NT (the left plot), MG/NT with (2) (the middle plot) and
model (5) (the right plot). We can observe that the improvement over NT is not as great as
MG/NT with (3) in set 1 tests. However it is pleasing to see that such (previously not tested)
non-smooth functionals can lead to better restored images.

Fig. 6: Performance of MG/NT with models (2) and (5) with 95% salt-and-pepper noise. For
problem 1: psnr(r, uNT ) = 23.32, psnr(r, ueq.(2)) = 24.39 and psnr(r, uTV ) = 23.86. For
problem 2: psnr(r, uNT ) = 23.52, psnr(r, ueq.(2)) = 24.40 and psnr(r, uTV ) = 24.08.
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Finally, we discuss on the number of levels that can be used in Algorithm 2. In previous tests,
we used the full levels. This point arises as all local minimizations are to help achieve the global
convergence in a less nested way than the geometric MG for a partial differential equation. As
discussed before, we always need the patch level and the corresponding coarse level minimization
on each patch block. We wish to see if other coarse levels are needed. In Figures 7–8, we display
respectively the cases of ν = 1 and ν = 2 for testing problems 1−2 with 90% noise and n = 512.
There, we compared the obtained PSNR values as the number of MG cycles increases when
levels = 1, 2 and 10 (the maximal number of levels), plotting against the corresponding PSNR
value from NT. Clearly one observes that there is no harm in using more MG levels, larger ν
makes the use of full MG levels less necessary and above all convergence does not require to
have all coarse levels. The related idea of starting iterations from the coarsest level rather than
the finest is also tested (on the above 4 examples) and no advantages are observed. However
for extremely simple images that contain a few large and piecewise constant features, it is not
difficult to see that this (full multigrid-like) idea will be useful. In any case, we emphasize again
that the patch level is always needed for convergence.

Remark 1: It is of interest to remark on why the initial image u at N should influence the convergence
of Algorithm 2. We believe that the initial image u supplied by phase 1 obtained by local median type
ideas commonly has over-estimated piecewise constant patches present in u that our existing multilevel
method (Algorithm 2) cannot handle. Similar problem also existed for the piecewise constant multilevel
method (Algorithm 1) for Gaussian denoising. For instance, if the true image (in 1 dimension) is r =
[10 10 10 10 20 20 20 20] and an initial image is given as u = [10 10 10 10 10 10 20 20], Algorithm 1 will
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Fig. 7: Convergence history for ν = 1 with Problems 1 (left) and 2 (right).
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Fig. 8: Convergence history for ν = 2 with Problems 1 (left) and 2 (right).
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not work while the initial image u = [1 1 1 1 50 50 50 50] or any random vector u will be fine. This is
related to the assumption of constant patches being correctly detected [8]. In this sense, one idea would
be to ensure that the initial image does not have any constant patches at all.

5 Conclusions

We have generalized a multilevel method previously proposed for the standard Gaussian de-
noising model to solve an impulse denoising model. The multi-resolution strategy of the new
algorithm is found to give better restoration results for images with high noise level and the
improvement is up to 2–3 dB. As the multilevel method has a nearly optimal complexity, it
naturally offers a fast solution procedure for extremely large images.
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